河南省焦作市普通高中2025屆高考仿真模擬數(shù)學(xué)試卷含解析_第1頁
河南省焦作市普通高中2025屆高考仿真模擬數(shù)學(xué)試卷含解析_第2頁
河南省焦作市普通高中2025屆高考仿真模擬數(shù)學(xué)試卷含解析_第3頁
河南省焦作市普通高中2025屆高考仿真模擬數(shù)學(xué)試卷含解析_第4頁
河南省焦作市普通高中2025屆高考仿真模擬數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

河南省焦作市普通高中2025屆高考仿真模擬數(shù)學(xué)試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知雙曲線的右焦點(diǎn)為,若雙曲線的一條漸近線的傾斜角為,且點(diǎn)到該漸近線的距離為,則雙曲線的實(shí)軸的長為A. B.C. D.2.已知數(shù)列an滿足:an=2,n≤5a1A.16 B.17 C.18 D.193.已知復(fù)數(shù)z滿足(i為虛數(shù)單位),則z的虛部為()A. B. C.1 D.4.集合,則集合的真子集的個數(shù)是A.1個 B.3個 C.4個 D.7個5.設(shè),則“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件6.已知函數(shù)且的圖象恒過定點(diǎn),則函數(shù)圖象以點(diǎn)為對稱中心的充要條件是()A. B.C. D.7.已知非零向量、,若且,則向量在向量方向上的投影為()A. B. C. D.8.已知,函數(shù),若函數(shù)恰有三個零點(diǎn),則()A. B.C. D.9.已知函數(shù)(,)的一個零點(diǎn)是,函數(shù)圖象的一條對稱軸是直線,則當(dāng)取得最小值時(shí),函數(shù)的單調(diào)遞增區(qū)間是()A.() B.()C.() D.()10.已知平面,,直線滿足,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.即不充分也不必要條件11.已知函數(shù),若,則a的取值范圍為()A. B. C. D.12.函數(shù)的定義域?yàn)椋?,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.過動點(diǎn)作圓:的切線,其中為切點(diǎn),若(為坐標(biāo)原點(diǎn)),則的最小值是__________.14.已知,,且,若恒成立,則實(shí)數(shù)的取值范圍是____.15.已知函數(shù)為奇函數(shù),,且與圖象的交點(diǎn)為,,…,,則______.16.已知,如果函數(shù)有三個零點(diǎn),則實(shí)數(shù)的取值范圍是____________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在中,內(nèi)角的對邊分別是,已知.(1)求的值;(2)若,求的面積.18.(12分)在平面直角坐標(biāo)系xOy中,曲線的參數(shù)方程為(為參數(shù)).以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.(1)求曲線的極坐標(biāo)方程;(2)設(shè)和交點(diǎn)的交點(diǎn)為,求的面積.19.(12分)設(shè)函數(shù)().(1)討論函數(shù)的單調(diào)性;(2)若關(guān)于x的方程有唯一的實(shí)數(shù)解,求a的取值范圍.20.(12分)如圖所示,三棱柱中,平面,點(diǎn),分別在線段,上,且,,是線段的中點(diǎn).(Ⅰ)求證:平面;(Ⅱ)若,,,求直線與平面所成角的正弦值.21.(12分)在平面直角坐標(biāo)系中,,,且滿足(1)求點(diǎn)的軌跡的方程;(2)過,作直線交軌跡于,兩點(diǎn),若的面積是面積的2倍,求直線的方程.22.(10分)已知函數(shù)的定義域?yàn)?(1)求實(shí)數(shù)的取值范圍;(2)設(shè)實(shí)數(shù)為的最小值,若實(shí)數(shù),,滿足,求的最小值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】

雙曲線的漸近線方程為,由題可知.設(shè)點(diǎn),則點(diǎn)到直線的距離為,解得,所以,解得,所以雙曲線的實(shí)軸的長為,故選B.2、B【解析】

由題意可得a1=a2=a3=a4=a5=2,累加法求得a62+【詳解】解:an即a1=an?6時(shí),a1a1兩式相除可得1+a則an2=由a6a7…,ak2=可得aa1且a1正整數(shù)k(k?5)時(shí),要使得a1則ak+1則k=17,故選:B.【點(diǎn)睛】本題考查與遞推數(shù)列相關(guān)的方程的整數(shù)解的求法,注意將題設(shè)中的遞推關(guān)系變形得到新的遞推關(guān)系,從而可簡化與數(shù)列相關(guān)的方程,本題屬于難題.3、D【解析】

根據(jù)復(fù)數(shù)z滿足,利用復(fù)數(shù)的除法求得,再根據(jù)復(fù)數(shù)的概念求解.【詳解】因?yàn)閺?fù)數(shù)z滿足,所以,所以z的虛部為.故選:D.【點(diǎn)睛】本題主要考查復(fù)數(shù)的概念及運(yùn)算,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.4、B【解析】

由題意,結(jié)合集合,求得集合,得到集合中元素的個數(shù),即可求解,得到答案.【詳解】由題意,集合,則,所以集合的真子集的個數(shù)為個,故選B.【點(diǎn)睛】本題主要考查了集合的運(yùn)算和集合中真子集的個數(shù)個數(shù)的求解,其中作出集合的運(yùn)算,得到集合,再由真子集個數(shù)的公式作出計(jì)算是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力.5、B【解析】

先解不等式化簡兩個條件,利用集合法判斷充分必要條件即可【詳解】解不等式可得,解絕對值不等式可得,由于為的子集,據(jù)此可知“”是“”的必要不充分條件.故選:B【點(diǎn)睛】本題考查了必要不充分條件的判定,考查了學(xué)生數(shù)學(xué)運(yùn)算,邏輯推理能力,屬于基礎(chǔ)題.6、A【解析】

由題可得出的坐標(biāo)為,再利用點(diǎn)對稱的性質(zhì),即可求出和.【詳解】根據(jù)題意,,所以點(diǎn)的坐標(biāo)為,又,所以.故選:A.【點(diǎn)睛】本題考查指數(shù)函數(shù)過定點(diǎn)問題和函數(shù)對稱性的應(yīng)用,屬于基礎(chǔ)題.7、D【解析】

設(shè)非零向量與的夾角為,在等式兩邊平方,求出的值,進(jìn)而可求得向量在向量方向上的投影為,即可得解.【詳解】,由得,整理得,,解得,因此,向量在向量方向上的投影為.故選:D.【點(diǎn)睛】本題考查向量投影的計(jì)算,同時(shí)也考查利用向量的模計(jì)算向量的夾角,考查計(jì)算能力,屬于基礎(chǔ)題.8、C【解析】

當(dāng)時(shí),最多一個零點(diǎn);當(dāng)時(shí),,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,根據(jù)單調(diào)性畫函數(shù)草圖,根據(jù)草圖可得.【詳解】當(dāng)時(shí),,得;最多一個零點(diǎn);當(dāng)時(shí),,,當(dāng),即時(shí),,在,上遞增,最多一個零點(diǎn).不合題意;當(dāng),即時(shí),令得,,函數(shù)遞增,令得,,函數(shù)遞減;函數(shù)最多有2個零點(diǎn);根據(jù)題意函數(shù)恰有3個零點(diǎn)函數(shù)在上有一個零點(diǎn),在,上有2個零點(diǎn),如圖:且,解得,,.故選.【點(diǎn)睛】遇到此類問題,不少考生會一籌莫展.由于方程中涉及兩個參數(shù),故按“一元化”想法,逐步分類討論,這一過程中有可能分類不全面、不徹底.9、B【解析】

根據(jù)函數(shù)的一個零點(diǎn)是,得出,再根據(jù)是對稱軸,得出,求出的最小值與對應(yīng)的,寫出即可求出其單調(diào)增區(qū)間.【詳解】依題意得,,即,解得或(其中,).①又,即(其中).②由①②得或,即或(其中,,),因此的最小值為.因?yàn)椋裕ǎ?又,所以,所以,令(),則().因此,當(dāng)取得最小值時(shí),的單調(diào)遞增區(qū)間是().故選:B【點(diǎn)睛】此題考查三角函數(shù)的對稱軸和對稱點(diǎn),在對稱軸處取得最值,對稱點(diǎn)處函數(shù)值為零,屬于較易題目.10、A【解析】

,是相交平面,直線平面,則“”“”,反之,直線滿足,則或//或平面,即可判斷出結(jié)論.【詳解】解:已知直線平面,則“”“”,反之,直線滿足,則或//或平面,“”是“”的充分不必要條件.故選:A.【點(diǎn)睛】本題考查了線面和面面垂直的判定與性質(zhì)定理、簡易邏輯的判定方法,考查了推理能力與計(jì)算能力.11、C【解析】

求出函數(shù)定義域,在定義域內(nèi)確定函數(shù)的單調(diào)性,利用單調(diào)性解不等式.【詳解】由得,在時(shí),是增函數(shù),是增函數(shù),是增函數(shù),∴是增函數(shù),∴由得,解得.故選:C.【點(diǎn)睛】本題考查函數(shù)的單調(diào)性,考查解函數(shù)不等式,解題關(guān)鍵是確定函數(shù)的單調(diào)性,解題時(shí)可先確定函數(shù)定義域,在定義域內(nèi)求解.12、A【解析】

根據(jù)函數(shù)定義域得集合,解對數(shù)不等式得到集合,然后直接利用交集運(yùn)算求解.【詳解】解:由函數(shù)得,解得,即;又,解得,即,則.故選:A.【點(diǎn)睛】本題考查了交集及其運(yùn)算,考查了函數(shù)定義域的求法,是基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】解答:由圓的方程可得圓心C的坐標(biāo)為(2,2),半徑等于1.由M(a,b),則|MN|2=(a?2)2+(b?2)2?12=a2+b2?4a?4b+7,|MO|2=a2+b2.由|MN|=|MO|,得a2+b2?4a?4b+7=a2+b2.整理得:4a+4b?7=0.∴a,b滿足的關(guān)系為:4a+4b?7=0.求|MN|的最小值,就是求|MO|的最小值.在直線4a+4b?7=0上取一點(diǎn)到原點(diǎn)距離最小,由“垂線段最短”得,直線OM垂直直線4a+4b?7=0,由點(diǎn)到直線的距離公式得:MN的最小值為:.14、(-4,2)【解析】試題分析:因?yàn)楫?dāng)且僅當(dāng)時(shí)取等號,所以考點(diǎn):基本不等式求最值15、18【解析】

由題意得函數(shù)f(x)與g(x)的圖像都關(guān)于點(diǎn)對稱,結(jié)合函數(shù)的對稱性進(jìn)行求解即可.【詳解】函數(shù)為奇函數(shù),函數(shù)關(guān)于點(diǎn)對稱,,函數(shù)關(guān)于點(diǎn)對稱,所以兩個函數(shù)圖象的交點(diǎn)也關(guān)于點(diǎn)(1,2)對稱,與圖像的交點(diǎn)為,,…,,兩兩關(guān)于點(diǎn)對稱,.故答案為:18【點(diǎn)睛】本題考查了函數(shù)對稱性的應(yīng)用,結(jié)合函數(shù)奇偶性以及分式函數(shù)的性質(zhì)求出函數(shù)的對稱性是解決本題的關(guān)鍵,屬于中檔題.16、【解析】

首先把零點(diǎn)問題轉(zhuǎn)化為方程問題,等價(jià)于有三個零點(diǎn),兩側(cè)開方,可得,即有三個零點(diǎn),再運(yùn)用函數(shù)的單調(diào)性結(jié)合最值即可求出參數(shù)的取值范圍.【詳解】若函數(shù)有三個零點(diǎn),即零點(diǎn)有,顯然,則有,可得,即有三個零點(diǎn),不妨令,對于,函數(shù)單調(diào)遞增,,,所以函數(shù)在區(qū)間上只有一解,對于函數(shù),,解得,,解得,,解得,所以函數(shù)在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,,當(dāng)時(shí),,當(dāng)時(shí),,此時(shí)函數(shù)若有兩個零點(diǎn),則有,綜上可知,若函數(shù)有三個零點(diǎn),則實(shí)數(shù)的取值范圍是.故答案為:【點(diǎn)睛】本題考查了函數(shù)零點(diǎn)的零點(diǎn),恰當(dāng)?shù)拈_方,轉(zhuǎn)化為函數(shù)有零點(diǎn)問題,注意恰有三個零點(diǎn)條件的應(yīng)用,根據(jù)函數(shù)的最值求解參數(shù)的范圍,屬于難題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】

(1)由,利用余弦定理可得,結(jié)合可得結(jié)果;(2)由正弦定理,,利用三角形內(nèi)角和定理可得,由三角形面積公式可得結(jié)果.【詳解】(1)由題意,得.∵.∴,∵,∴.(2)∵,由正弦定理,可得.∵a>b,∴,∴.∴.【點(diǎn)睛】本題主要考查正弦定理、余弦定理及特殊角的三角函數(shù),屬于中檔題.對余弦定理一定要熟記兩種形式:(1);(2),同時(shí)還要熟練掌握運(yùn)用兩種形式的條件.另外,在解與三角形、三角函數(shù)有關(guān)的問題時(shí),還需要記住等特殊角的三角函數(shù)值,以便在解題中直接應(yīng)用.18、(1);(2)【解析】

(1)先將曲線的參數(shù)方程化為普通方程,再將普通方程化為極坐標(biāo)方程即可.(2)將和的極坐標(biāo)方程聯(lián)立,求得兩個曲線交點(diǎn)的極坐標(biāo),即可由極坐標(biāo)的含義求得的面積.【詳解】(1)曲線的參數(shù)方程為(α為參數(shù)),消去參數(shù)的的直角坐標(biāo)方程為.所以的極坐標(biāo)方程為(2)解方程組,得到.所以,則或().當(dāng)()時(shí),,當(dāng)()時(shí),.所以和的交點(diǎn)極坐標(biāo)為:,.所以.故的面積為.【點(diǎn)睛】本題考查了參數(shù)方程與普通方程的轉(zhuǎn)化,直角坐標(biāo)方程與極坐標(biāo)的轉(zhuǎn)化,利用極坐標(biāo)求三角形面積,屬于中檔題.19、(1)當(dāng)時(shí),遞增區(qū)間時(shí),無遞減區(qū)間,當(dāng)時(shí),遞增區(qū)間時(shí),遞減區(qū)間時(shí);(2)或.【解析】

(1)求出,對分類討論,先考慮(或)恒成立的范圍,并以此作為的分類標(biāo)準(zhǔn),若不恒成立,求解,即可得出結(jié)論;(2)有解,即,令,轉(zhuǎn)化求函數(shù)只有一個實(shí)數(shù)解,根據(jù)(1)中的結(jié)論,即可求解.【詳解】(1),當(dāng)時(shí),恒成立,當(dāng)時(shí),,綜上,當(dāng)時(shí),遞增區(qū)間時(shí),無遞減區(qū)間,當(dāng)時(shí),遞增區(qū)間時(shí),遞減區(qū)間時(shí);(2),令,原方程只有一個解,只需只有一個解,即求只有一個零點(diǎn)時(shí),的取值范圍,由(1)得當(dāng)時(shí),在單調(diào)遞增,且,函數(shù)只有一個零點(diǎn),原方程只有一個解,當(dāng)時(shí),由(1)得在出取得極小值,也是最小值,當(dāng)時(shí),,此時(shí)函數(shù)只有一個零點(diǎn),原方程只有一個解,當(dāng)且遞增區(qū)間時(shí),遞減區(qū)間時(shí);,當(dāng),有兩個零點(diǎn),即原方程有兩個解,不合題意,所以的取值范圍是或.【點(diǎn)睛】本題考查導(dǎo)數(shù)的綜合應(yīng)用,涉及到單調(diào)性、零點(diǎn)、極值最值,考查分類討論和等價(jià)轉(zhuǎn)化思想,屬于中檔題.20、(Ⅰ)證明見詳解;(Ⅱ).【解析】

(Ⅰ)取中點(diǎn)為,根據(jù)幾何關(guān)系,求證四邊形為平行四邊形,即可由線線平行推證線面平行;(Ⅱ)以為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系,求得直線的方向向量和平面的法向量,即可求得線面角的正弦值.【詳解】(Ⅰ)取的中點(diǎn),連接,.如下圖所示:因?yàn)椋謩e是線段和的中點(diǎn),所以是梯形的中位線,所以.又,所以.因?yàn)椋?,所以四邊形為平行四邊形,所?所以,.所以四邊形為平行四邊形,所以.又平面,平面,所以平面.(Ⅱ)因?yàn)?,且平面,故可以為原點(diǎn),的方向?yàn)檩S正方向建立如圖所示的空間直角坐標(biāo)系,如下圖所示:不妨設(shè),則,所以,,,,.所以,,.設(shè)平面的法向量為,則所以可取.設(shè)直線與平面所成的角為,則.故可得直線與平面所成的角的正弦值為.【點(diǎn)睛】本題考查由線線平行推證線面平行,以及用向量法求解線面角,屬綜合中檔題.21、(1).(2)的方程為.【解析】

(1)令,則,由此能求出點(diǎn)C的軌跡方程.(2)令,令直線,聯(lián)立,得,由此利用根的判別式,韋達(dá)定理,三角形面積公式,結(jié)合已知條件能求出直線的方程?!驹斀狻拷猓海?)因?yàn)?,即直線的斜率分別為且,設(shè)點(diǎn),則,整理得.(2)令,易知直線不與軸重合,令直線,與聯(lián)立得,所以有,由,故,即,從而,解得,即。所以直線的方程為?!军c(diǎn)睛】本題考查橢圓方程、直線方

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論