新高考數(shù)學(xué)一輪復(fù)習(xí) 專項分層精練第08課 指數(shù)函數(shù)(解析版)_第1頁
新高考數(shù)學(xué)一輪復(fù)習(xí) 專項分層精練第08課 指數(shù)函數(shù)(解析版)_第2頁
新高考數(shù)學(xué)一輪復(fù)習(xí) 專項分層精練第08課 指數(shù)函數(shù)(解析版)_第3頁
新高考數(shù)學(xué)一輪復(fù)習(xí) 專項分層精練第08課 指數(shù)函數(shù)(解析版)_第4頁
新高考數(shù)學(xué)一輪復(fù)習(xí) 專項分層精練第08課 指數(shù)函數(shù)(解析版)_第5頁
已閱讀5頁,還剩27頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

第08課指數(shù)函數(shù)(分層專項精練)【一層練基礎(chǔ)】一、單選題1.(2023·全國·高三專題練習(xí))英國著名數(shù)學(xué)家布魯克-泰勒以微積分學(xué)中將函數(shù)展開成無窮級數(shù)的定理著稱于世.在數(shù)學(xué)中,泰勒級數(shù)用無限連加式來表示一個函數(shù),泰勒提出了適用于所有函數(shù)的泰勒級數(shù),并建立了如下指數(shù)函數(shù)公式:SKIPIF1<0,其中SKIPIF1<0,則SKIPIF1<0的近似值為(精確到SKIPIF1<0)(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<02.(2023春·福建莆田·高二校考期中)設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<03.(2023·全國·高三專題練習(xí))已知SKIPIF1<0則SKIPIF1<0等于(

)A.SKIPIF1<0 B.SKIPIF1<0 C.1 D.24.(2022秋·山東臨沂·高一校考階段練習(xí))已知函數(shù)SKIPIF1<0(其中SKIPIF1<0)的圖象如圖所示,則函數(shù)SKIPIF1<0的圖象大致是(

)A.B.C.D.5.(2020·高一課時練習(xí))SKIPIF1<0且SKIPIF1<0)是增函數(shù),那么函數(shù)SKIPIF1<0的圖象大致是(

)A. B. C. D.6.(2020秋·江西吉安·高一校聯(lián)考期中)函數(shù)SKIPIF1<0,且SKIPIF1<0的圖象過一個定點,則這個定點坐標(biāo)是SKIPIF1<0SKIPIF1<0A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<07.(2022秋·天津北辰·高三校考階段練習(xí))函數(shù)SKIPIF1<0的部分圖象可能是(

)A.B. C. D.8.(2023·全國·高三專題練習(xí))已知SKIPIF1<0且SKIPIF1<0,則函數(shù)SKIPIF1<0為奇函數(shù)的一個充分不必要條件是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<09.(2023·河北·高三學(xué)業(yè)考試)若SKIPIF1<0滿足不等式SKIPIF1<0,則函數(shù)SKIPIF1<0的值域是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<010.(2023·全國·高三專題練習(xí))若函數(shù)f(x)=SKIPIF1<0是R上的增函數(shù),則實數(shù)a的取值范圍為(

)A.(1,+∞) B.(1,8) C.(4,8) D.[4,8)11.(2023·江蘇南京·南京市第九中學(xué)校考模擬預(yù)測)已知SKIPIF1<0,c=sin1,則a,b,c的大小關(guān)系是(

)A.c<b<a B.c<a<b C.a(chǎn)<b<c D.a(chǎn)<c<b12.(2022秋·廣東肇慶·高三肇慶市第一中學(xué)校考階段練習(xí))若關(guān)于SKIPIF1<0的不等式SKIPIF1<0(SKIPIF1<0)恒成立,則實數(shù)SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<013.(2023·全國·高三專題練習(xí))要測定古物的年代,可以用放射性碳法:在動植物的體內(nèi)都含有微量的放射性SKIPIF1<0.動植物死亡后,停止了新陳代謝,SKIPIF1<0不再產(chǎn)生,且原來的SKIPIF1<0會自動衰變.經(jīng)過5730年,它的殘余量只有原始量的一半.現(xiàn)用放射性碳法測得某古物中SKIPIF1<0含量占原來的SKIPIF1<0,推算該古物約是SKIPIF1<0年前的遺物(參考數(shù)據(jù):SKIPIF1<0),則實數(shù)SKIPIF1<0的值為(

)A.12302 B.13304 C.23004 D.24034二、多選題14.(2024秋·湖北黃岡·高三浠水縣第一中學(xué)??茧A段練習(xí))已知函數(shù)SKIPIF1<0,則下列說法正確的是(

)A.SKIPIF1<0為奇函數(shù) B.SKIPIF1<0為減函數(shù)C.SKIPIF1<0有且只有一個零點 D.SKIPIF1<0的值域為SKIPIF1<015.(2023·浙江紹興·統(tǒng)考模擬預(yù)測)預(yù)測人口的變化趨勢有多種方法,“直接推算法”使用的公式是SKIPIF1<0,其中SKIPIF1<0為預(yù)測期人口數(shù),SKIPIF1<0為初期人口數(shù),SKIPIF1<0為預(yù)測期內(nèi)人口年增長率,SKIPIF1<0為預(yù)測期間隔年數(shù),則(

)A.當(dāng)SKIPIF1<0,則這期間人口數(shù)呈下降趨勢B.當(dāng)SKIPIF1<0,則這期間人口數(shù)呈擺動變化C.當(dāng)SKIPIF1<0時,SKIPIF1<0的最小值為3D.當(dāng)SKIPIF1<0時,SKIPIF1<0的最小值為3三、填空題16.(2022·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0的值域為R,則實數(shù)a的取值范圍是.17.(2022·全國·高三專題練習(xí))下列函數(shù)是奇函數(shù),且在SKIPIF1<0上單調(diào)遞增的是.①SKIPIF1<0②SKIPIF1<0③SKIPIF1<0④SKIPIF1<018.(2023春·北京石景山·高二統(tǒng)考期末)設(shè)函數(shù)SKIPIF1<0,則使得SKIPIF1<0成立的SKIPIF1<0的取值范圍是.19.(2014·甘肅天水·統(tǒng)考一模)下列5個判斷:①若SKIPIF1<0在SKIPIF1<0上增函數(shù),則SKIPIF1<0;②函數(shù)SKIPIF1<0只有兩個零點;③函數(shù)SKIPIF1<0的值域是SKIPIF1<0;④函數(shù)SKIPIF1<0的最小值是1;⑤在同一坐標(biāo)系中函數(shù)SKIPIF1<0與SKIPIF1<0的圖像關(guān)于SKIPIF1<0軸對稱.其中正確命題的序號【二層練綜合】一、單選題1.(2023·全國·高三專題練習(xí))蘇格蘭數(shù)學(xué)家科林麥克勞林(ColinMaclaurin)研究出了著名的Maclaurin級數(shù)展開式,受到了世界上頂尖數(shù)學(xué)家的廣泛認(rèn)可,下面是麥克勞林建立的其中一個公式:SKIPIF1<0,試根據(jù)此公式估計下面代數(shù)式SKIPIF1<0的近似值為(

)(可能用到數(shù)值SKIPIF1<0)A.2.322 B.4.785 C.4.755 D.1.0052.(2023·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0是SKIPIF1<0上的偶函數(shù),且SKIPIF1<0的圖象關(guān)于點SKIPIF1<0對稱,當(dāng)SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0的值為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.23.(2020·安徽安慶·安慶市第七中學(xué)校考模擬預(yù)測)已知函數(shù)SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<04.(2022秋·寧夏銀川·高三銀川一中校考階段練習(xí))若函數(shù)SKIPIF1<0是定義在SKIPIF1<0上的周期為2的奇函數(shù),當(dāng)SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0(

)A.0 B.2 C.4 D.-25.(2023·江蘇鎮(zhèn)江·揚中市第二高級中學(xué)??寄M預(yù)測)已知SKIPIF1<0是定義在SKIPIF1<0上的奇函數(shù)且滿足SKIPIF1<0為偶函數(shù),當(dāng)SKIPIF1<0時,SKIPIF1<0(SKIPIF1<0且SKIPIF1<0).若SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<06.(2023·全國·高三專題練習(xí))函數(shù)SKIPIF1<0的圖像大致為(

)A. B.C. D.7.(2021秋·高一課時練習(xí))已知正實數(shù)SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,則A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<08.(2022秋·遼寧葫蘆島·高三校聯(lián)考期中)函數(shù)SKIPIF1<0(SKIPIF1<0,且SKIPIF1<0)的圖象恒過定點SKIPIF1<0,若點SKIPIF1<0在橢圓SKIPIF1<0(SKIPIF1<0,SKIPIF1<0)上,則SKIPIF1<0的最小值為(

)A.12 B.14 C.16 D.189.(2007·天津·高考真題)設(shè)SKIPIF1<0均為正數(shù),且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.則()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<010.(2023秋·山西朔州·高三懷仁市第一中學(xué)校??计谀┮阎瘮?shù)SKIPIF1<0,則“SKIPIF1<0”是“函數(shù)SKIPIF1<0為偶函數(shù)”的(

)A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件11.(2023·陜西西安·統(tǒng)考三模)如圖是下列四個函數(shù)中的某個函數(shù)在區(qū)間SKIPIF1<0上的大致圖象,則該函數(shù)是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<012.(2023春·高二課時練習(xí))某微生物科研團隊為了研究某種細菌的繁殖情況,工作人員配制了一種適合該細菌繁殖的營養(yǎng)基質(zhì)用以培養(yǎng)該細菌,通過相關(guān)設(shè)備以及分析計算后得到:該細菌在前3個小時的細菌數(shù)SKIPIF1<0與時間SKIPIF1<0(單位:小時,且SKIPIF1<0)滿足回歸方程SKIPIF1<0(其中SKIPIF1<0為常數(shù)),若SKIPIF1<0,且前3個小時SKIPIF1<0與SKIPIF1<0的部分?jǐn)?shù)據(jù)如下表:SKIPIF1<0123SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<03個小時后,向該營養(yǎng)基質(zhì)中加入某種細菌抑制劑,分析計算后得到細菌數(shù)SKIPIF1<0與時間SKIPIF1<0(單位:小時,且SKIPIF1<0)滿足關(guān)系式:SKIPIF1<0,在SKIPIF1<0時刻,該細菌數(shù)達到最大,隨后細菌個數(shù)逐漸減少,則SKIPIF1<0的值為(

)A.4 B.SKIPIF1<0 C.5 D.SKIPIF1<013.(2023春·山西大同·高二校考期中)鐘靈大道是連接新余北站和新余城區(qū)的主干道,是新余對外交流的門戶之一,而仰天崗大橋就是這一條主干道的起點,其橋拱曲線形似懸鏈線,橋型優(yōu)美,被廣大市民們美稱為“彩虹橋”,是我市的標(biāo)志性建筑之一,函數(shù)解析式為SKIPIF1<0,則下列關(guān)于SKIPIF1<0的說法正確的是(

)A.SKIPIF1<0,SKIPIF1<0為奇函數(shù)B.SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增C.SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增D.SKIPIF1<0,SKIPIF1<0有最小值114.(2023·全國·高三專題練習(xí))已知SKIPIF1<0為偶函數(shù),SKIPIF1<0為奇函數(shù),且滿足SKIPIF1<0.若存在SKIPIF1<0,使得不等式SKIPIF1<0有解,則實數(shù)SKIPIF1<0的最大值為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.1 D.-115.(2021·陜西西安·統(tǒng)考三模)射線測厚技術(shù)原理公式為SKIPIF1<0,其中SKIPIF1<0分別為射線穿過被測物前后的強度,SKIPIF1<0是自然對數(shù)的底數(shù),SKIPIF1<0為被測物厚度,SKIPIF1<0為被測物的密度,SKIPIF1<0是被測物對射線的吸收系數(shù).工業(yè)上通常用镅241(SKIPIF1<0)低能SKIPIF1<0射線測量鋼板的厚度.若這種射線對鋼板的半價層厚度為0.8,鋼的密度為7.6,則這種射線的吸收系數(shù)為(

)(注:半價層厚度是指將已知射線強度減弱為一半的某種物質(zhì)厚度,SKIPIF1<0,結(jié)果精確到0.001)A.0.110 B.0.112 C.SKIPIF1<0 D.SKIPIF1<0二、多選題16.(2022·全國·高一期末)若兩函數(shù)的定義域、單調(diào)區(qū)間、奇偶性、值域都相同,則稱這兩函數(shù)為“伙伴函數(shù)”.下列函數(shù)中與函數(shù)SKIPIF1<0不是“伙伴函數(shù)”是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<017.(2022秋·廣東廣州·高一廣州市真光中學(xué)校考期中)若實數(shù)SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0則下列關(guān)系式中可能成立的是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<018.(2023·全國·高三專題練習(xí))已知實數(shù)SKIPIF1<0滿足SKIPIF1<0,則(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<019.(2022秋·山西太原·高一??茧A段練習(xí))已知SKIPIF1<0,且SKIPIF1<0,則(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0三、填空題20.(2023·全國·高三專題練習(xí))函數(shù)SKIPIF1<0在SKIPIF1<0的值域為.21.(2020·高一課時練習(xí))定義區(qū)間[x1,x2]的長度為x2-x1,已知函數(shù)f(x)=3|x|的定義域為[a,b],值域為[1,9],則區(qū)間[a,b]長度的最小值為.22.(2022秋·四川成都·高三樹德中學(xué)??茧A段練習(xí))已知函數(shù)SKIPIF1<0,則不等式SKIPIF1<0的解集是.23.(2023·全國·高三專題練習(xí))已知實數(shù)SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0.【三層練能力】一、單選題1.(2022·天津北辰·??寄M預(yù)測)已知SKIPIF1<0且SKIPIF1<0,函數(shù)SKIPIF1<0在SKIPIF1<0上是單調(diào)函數(shù),若關(guān)于SKIPIF1<0的方程SKIPIF1<0恰有2個互異的實數(shù)解,則SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<02.(2023·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0,存在實數(shù)SKIPIF1<0使得SKIPIF1<0成立,若正整數(shù)SKIPIF1<0的最大值為6,則SKIPIF1<0的取值范圍為(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0二、多選題3.(2023秋·黑龍江大慶·高三鐵人中學(xué)校考期末)當(dāng)SKIPIF1<0時,不等式SKIPIF1<0成立.若SKIPIF1<0,則(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<04.(2023春·北京海淀·高二北京交通大學(xué)附屬中學(xué)??计谥校┰O(shè)函數(shù)SKIPIF1<0,則下列選項正確的是(

)A.SKIPIF1<0為奇函數(shù)B.SKIPIF1<0的圖象關(guān)于點SKIPIF1<0對稱C.SKIPIF1<0的最小值為SKIPIF1<0D.若SKIPIF1<0有兩個不等實根,則SKIPIF1<0,且SKIPIF1<0三、填空題5.(2023·四川南充·閬中中學(xué)校考二模)已知SKIPIF1<0,若存在SKIPIF1<0,使得SKIPIF1<0,則SKIPIF1<0的取值范圍為.6.(2022春·上海浦東新·高三上海市建平中學(xué)校考階段練習(xí))將SKIPIF1<0的圖象向右平移2個單位后得曲線SKIPIF1<0,將函數(shù)SKIPIF1<0的圖象向下平移2個單位后得曲線SKIPIF1<0,SKIPIF1<0與SKIPIF1<0關(guān)于SKIPIF1<0軸對稱.若SKIPIF1<0的最小值為SKIPIF1<0且SKIPIF1<0,則實數(shù)SKIPIF1<0的取值范圍為.【一層練基礎(chǔ)】參考答案1.C【分析】應(yīng)用題設(shè)泰勒展開式可得SKIPIF1<0,隨著SKIPIF1<0的增大,數(shù)列SKIPIF1<0遞減且靠后各項無限接近于SKIPIF1<0,即可估計SKIPIF1<0的近似值.【詳解】計算前四項,在千分位上四舍五入由題意知:SKIPIF1<0SKIPIF1<0故選:C2.D【詳解】SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,根據(jù)SKIPIF1<0在SKIPIF1<0上是增函數(shù),所以SKIPIF1<0,即SKIPIF1<0.故選:D.3.C【分析】根據(jù)分段函數(shù)的解析式,結(jié)合對應(yīng)區(qū)間求SKIPIF1<0即可.【詳解】∵26>4,∴SKIPIF1<0,又SKIPIF1<0,∴SKIPIF1<0.故選:C.4.C【分析】根據(jù)二次函數(shù)圖象特點,結(jié)合指數(shù)型函數(shù)圖象的特點進行判斷即可.【詳解】SKIPIF1<0的函數(shù)圖象與SKIPIF1<0軸的交點的橫坐標(biāo)為SKIPIF1<0的兩個根,由SKIPIF1<0可得兩根為a,b,觀察SKIPIF1<0的圖象,可得其與軸的兩個交點分別在區(qū)間SKIPIF1<0與SKIPIF1<0上,又∵SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,SKIPIF1<0由可知,當(dāng)SKIPIF1<0時,SKIPIF1<0為增函數(shù),又由SKIPIF1<0得SKIPIF1<0的圖象與y軸的交點在x軸上方,分析選項可得C符合這兩點.故選:C.5.D【分析】先根據(jù)函數(shù)SKIPIF1<0且SKIPIF1<0)的單調(diào)性判斷底數(shù)SKIPIF1<0的范圍,得到函數(shù)SKIPIF1<0的圖象,再利用圖象平移得到函數(shù)SKIPIF1<0的圖象.【詳解】解;∵SKIPIF1<0可變形為SKIPIF1<0,若它是增函數(shù),則SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0為過點(1,0)的減函數(shù),∴SKIPIF1<0為過點(1,0)的增函數(shù),∵SKIPIF1<0圖象為SKIPIF1<0圖象向左平移1個單位長度,∴SKIPIF1<0圖象為過(0,0)點的增函數(shù),故選D.【點睛】本題考查了指對數(shù)函數(shù)的單調(diào)性,以及圖象的平移變化,做題時要認(rèn)真觀察.6.B【詳解】試題分析:令SKIPIF1<0得SKIPIF1<0SKIPIF1<0時SKIPIF1<0,所以過定點SKIPIF1<0考點:指數(shù)函數(shù)性質(zhì)7.C【分析】根據(jù)函數(shù)的奇偶性排除AB,再根據(jù)SKIPIF1<0趨近于SKIPIF1<0時的值判斷即可【詳解】因為SKIPIF1<0,故SKIPIF1<0為奇函數(shù),排除AB,又當(dāng)SKIPIF1<0趨近于SKIPIF1<0時,SKIPIF1<0遠遠大于SKIPIF1<0,所有函數(shù)逐漸趨近于0,排除D故選:C8.C【分析】先利用奇函數(shù)的性質(zhì)SKIPIF1<0得到SKIPIF1<0,然后在利用定義驗證此時函數(shù)SKIPIF1<0為奇函數(shù),從而得到函數(shù)SKIPIF1<0為奇函數(shù)的充分必要條件是SKIPIF1<0,進而根據(jù)充分不必要條件的概念作出判定.【詳解】若函數(shù)SKIPIF1<0為奇函數(shù),由于函數(shù)SKIPIF1<0的定義域為R,∴SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,∴SKIPIF1<0∴SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0,即SKIPIF1<0為奇函數(shù)的充分必要條件是SKIPIF1<0或SKIPIF1<0,SKIPIF1<0是SKIPIF1<0的非充分非必要條件;SKIPIF1<0是SKIPIF1<0的非充分非必要條件;SKIPIF1<0是SKIPIF1<0的充分不必要條件;故選:C.9.B【分析】先將不等式左右兩邊化為底數(shù)相同,再由指數(shù)函數(shù)的單調(diào)性解不等式即可求得SKIPIF1<0的范圍,再由指數(shù)函數(shù)的單調(diào)性即可求值域.【詳解】由SKIPIF1<0可得SKIPIF1<0,因為SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0即SKIPIF1<0,解得:SKIPIF1<0,所以SKIPIF1<0,即函數(shù)SKIPIF1<0的值域是SKIPIF1<0,故選:B.10.D【分析】根據(jù)函數(shù)的單調(diào)性給出不等式組,求解參數(shù)的取值范圍即可.【詳解】由題意得SKIPIF1<0SKIPIF1<0解得4≤a<8.故選:D.11.D【分析】由對數(shù)的運算法則求出a,然后根據(jù)指數(shù)函數(shù)與正弦函數(shù)的單調(diào)性分別對b,c進行放縮,最后求得答案.【詳解】由題意,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0.故選:D.12.B【分析】根據(jù)指數(shù)函數(shù)的性質(zhì),參變分離可得SKIPIF1<0恒成立,再根據(jù)冪函數(shù)的性質(zhì)計算可得;【詳解】解:因為SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0恒成立,即SKIPIF1<0恒成立,因為SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0;故選:B13.B【分析】設(shè)SKIPIF1<0每年的衰變率為SKIPIF1<0,古物中原SKIPIF1<0的含量為SKIPIF1<0,然后根據(jù)半衰期,建立方程,將已知條件帶入取對數(shù),利用對數(shù)性質(zhì)運算即可.【詳解】設(shè)SKIPIF1<0每年的衰變率為SKIPIF1<0,古物中原SKIPIF1<0的含量為SKIPIF1<0,由半衰期,得SKIPIF1<0.所以SKIPIF1<0,即SKIPIF1<0.由題意,知SKIPIF1<0,即SKIPIF1<0.于是SKIPIF1<0.所以SKIPIF1<0.故選:B.14.AC【分析】化簡函數(shù)解析式,分析函數(shù)的奇偶性,單調(diào)性,值域,零點即可求解.【詳解】SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,故SKIPIF1<0為奇函數(shù),又SKIPIF1<0,SKIPIF1<0在R上單調(diào)遞增,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,即函數(shù)值域為SKIPIF1<0令SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,故函數(shù)有且只有一個零點0.綜上可知,AC正確,BD錯誤.故選:AC15.AC【分析】由指數(shù)函數(shù)的性質(zhì)確定函數(shù)的增減性可判斷A,B;分別代入SKIPIF1<0和SKIPIF1<0,解指數(shù)不等式可判斷C,D.【詳解】SKIPIF1<0,由指數(shù)函數(shù)的性質(zhì)可知:SKIPIF1<0是關(guān)于n的單調(diào)遞減函數(shù),即人口數(shù)呈下降趨勢,故A正確,B不正確;SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0的最小值為3,故C正確;SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0的最小值為2,故D不正確;故選:AC.16.SKIPIF1<0【分析】首先分別求分段函數(shù)兩段的值域,再根據(jù)值域為SKIPIF1<0,列式求實數(shù)a的取值范圍.【詳解】當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,因為函數(shù)的值域為SKIPIF1<0,所以SKIPIF1<0,解得:SKIPIF1<0.故答案為:SKIPIF1<017.①③【分析】根據(jù)奇函數(shù)的定義及基本初等函數(shù)的單調(diào)性,對選項進行一一判斷,即可得答案;【詳解】①SKIPIF1<0,所以函數(shù)SKIPIF1<0是奇函數(shù),又SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,故正確;②SKIPIF1<0,所以SKIPIF1<0,所以函數(shù)SKIPIF1<0不是奇函數(shù),故錯誤;③SKIPIF1<0,所以函數(shù)SKIPIF1<0是奇函數(shù),SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,故正確;④SKIPIF1<0SKIPIF1<0,所以函數(shù)SKIPIF1<0是偶函數(shù),故錯誤;故答案為:①③18.SKIPIF1<0【分析】分SKIPIF1<0和SKIPIF1<0兩種情況討論從而解不等式SKIPIF1<0即可.【詳解】當(dāng)SKIPIF1<0時,由SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0,又因為SKIPIF1<0,所以SKIPIF1<0;當(dāng)SKIPIF1<0時,由SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0,又因為SKIPIF1<0,所以SKIPIF1<0.所以滿足SKIPIF1<0成立的SKIPIF1<0的取值范圍為SKIPIF1<0.故答案為:SKIPIF1<0.19.④⑤【分析】根據(jù)函數(shù)性質(zhì)逐個分析求解即可.【詳解】①若SKIPIF1<0在SKIPIF1<0上增函數(shù),所以只需SKIPIF1<0,即SKIPIF1<0,故①不正確;②畫出SKIPIF1<0和SKIPIF1<0負半軸的圖象,根據(jù)圖象可觀察在負半軸有一個零點,又SKIPIF1<0,SKIPIF1<0,所以函數(shù)SKIPIF1<0只有三個零點,故②不正確;③因為SKIPIF1<0,所以SKIPIF1<0,所以值域是SKIPIF1<0,故③不正確;④因為SKIPIF1<0,所以SKIPIF1<0,即最小值是SKIPIF1<0,故④正確;⑤因為兩個函數(shù)定義域相同,且用SKIPIF1<0代替SKIPIF1<0中的SKIPIF1<0,兩個解析式完全相同,所以圖象關(guān)于SKIPIF1<0軸對稱,故⑤正確.故答案為:④⑤.【二層練綜合】參考答案1.C【分析】由題目觀察可知SKIPIF1<0,代入SKIPIF1<0即可發(fā)現(xiàn)解法.【詳解】SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0所以SKIPIF1<0=4.755故選:C2.C【分析】由函數(shù)SKIPIF1<0的圖像關(guān)于點SKIPIF1<0對稱得到SKIPIF1<0,結(jié)合SKIPIF1<0是偶函數(shù)得到SKIPIF1<0,進一步得到SKIPIF1<0的周期是4,再利用周期性計算即可得到答案.【詳解】因為SKIPIF1<0是SKIPIF1<0上的偶函數(shù),所以SKIPIF1<0,又SKIPIF1<0的圖象關(guān)于點SKIPIF1<0對稱,則SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,得SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0是周期函數(shù),且周期SKIPIF1<0,由SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0.故選:C3.D【詳解】分析:先化簡SKIPIF1<0得到SKIPIF1<0,再求SKIPIF1<0的值.詳解:由題得SKIPIF1<0SKIPIF1<0所以SKIPIF1<0故答案為D點睛:(1)本題主要考查函數(shù)求值和指數(shù)對數(shù)運算,意在考查學(xué)生對這些基礎(chǔ)知識的掌握能力和運算能力.(2)解答本題的關(guān)鍵是整體代入求值.4.D【分析】由已知,利用奇函數(shù)及周期性求SKIPIF1<0,SKIPIF1<0的函數(shù)值,即可求目標(biāo)式的值.【詳解】∵SKIPIF1<0是定義在SKIPIF1<0上的奇函數(shù),∴SKIPIF1<0,又SKIPIF1<0在SKIPIF1<0上的周期為2,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0.故選:D.5.B【分析】根據(jù)已知條件可得SKIPIF1<0的對稱中心SKIPIF1<0,對稱軸SKIPIF1<0,可得SKIPIF1<0為SKIPIF1<0的一個周期,由SKIPIF1<0、SKIPIF1<0以及SKIPIF1<0列關(guān)于SKIPIF1<0的方程組,進而可得SKIPIF1<0時,SKIPIF1<0的解析式,再利用周期性即可求解.【詳解】因為SKIPIF1<0為奇函數(shù),所以SKIPIF1<0的圖象關(guān)于點SKIPIF1<0中心對稱,因為SKIPIF1<0為偶函數(shù),所以SKIPIF1<0的圖象關(guān)于直線SKIPIF1<0對稱.根據(jù)條件可知SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0為SKIPIF1<0的一個周期,則SKIPIF1<0,又因為SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0(舍),所以當(dāng)SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0,故選:B.6.A【分析】根據(jù)奇偶性和值域,運用排除法求解.【詳解】設(shè)SKIPIF1<0,則有SKIPIF1<0,SKIPIF1<0是奇函數(shù),排除D;SKIPIF1<0,排除B;當(dāng)SKIPIF1<0時,SKIPIF1<0,排除C;故選:A.7.B【分析】在同一坐標(biāo)系內(nèi),分別作出函數(shù)SKIPIF1<0的圖象,結(jié)合圖象,即可求解.【詳解】由題意,在同一坐標(biāo)系內(nèi),分別作出函數(shù)SKIPIF1<0的圖象,結(jié)合圖象可得:SKIPIF1<0,故選B.【點睛】本題主要考查了指數(shù)函數(shù)、對數(shù)函數(shù)的圖象與性質(zhì)的應(yīng)用,其中解中熟記指數(shù)函數(shù)、對數(shù)函數(shù)的圖象,結(jié)合圖象求解是解答的關(guān)鍵,著重考查了數(shù)形結(jié)合思想,以及推理與運算能力,屬于中檔試題.8.C【分析】求出SKIPIF1<0的坐標(biāo)代入橢圓方程,再將SKIPIF1<0化為積為定值的形式,利用基本不等式可求得結(jié)果.【詳解】由SKIPIF1<0,即SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0,因為點SKIPIF1<0在橢圓SKIPIF1<0上,所以SKIPIF1<0(SKIPIF1<0,SKIPIF1<0),所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時,等號成立.故選:C【點睛】易錯點睛:利用基本不等式求最值時,要注意其必須滿足的三個條件:(1)“一正二定三相等”“一正”就是各項必須為正數(shù);(2)“二定”就是要求和的最小值,必須把構(gòu)成和的二項之積轉(zhuǎn)化成定值;要求積的最大值,則必須把構(gòu)成積的因式的和轉(zhuǎn)化成定值;(3)“三相等”是利用基本不等式求最值時,必須驗證等號成立的條件,若不能取等號則這個定值就不是所求的最值,這也是最容易發(fā)生錯誤的地方.9.A【分析】試題分析:在同一坐標(biāo)系中分別畫出SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的圖象,SKIPIF1<0與SKIPIF1<0的交點的橫坐標(biāo)為SKIPIF1<0,SKIPIF1<0與SKIPIF1<0的圖象的交點的橫坐標(biāo)為SKIPIF1<0,SKIPIF1<0與SKIPIF1<0的圖象的交點的橫坐標(biāo)為SKIPIF1<0,從圖象可以看出.考點:指數(shù)函數(shù)、對數(shù)函數(shù)圖象和性質(zhì)的應(yīng)用.【方法點睛】一般一個方程中含有兩個以上的函數(shù)類型,就要考慮用數(shù)形結(jié)合求解,在同一坐標(biāo)系中畫出兩函數(shù)圖象的交點,函數(shù)圖象的交點的橫坐標(biāo)即為方程的解.【詳解】10.A【分析】由給定函數(shù)SKIPIF1<0,求出SKIPIF1<0為偶函數(shù)時的a值,再利用充分條件、必要條件的定義判斷作答.【詳解】函數(shù)SKIPIF1<0定義域為R,函數(shù)SKIPIF1<0為偶函數(shù),則SKIPIF1<0,SKIPIF1<0,而SKIPIF1<0不恒為0,因此,SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,所以“SKIPIF1<0”是“函數(shù)SKIPIF1<0為偶函數(shù)”的充分不必要條件.故選:A11.A【分析】根據(jù)給定的函數(shù)圖象特征,利用函數(shù)的奇偶性排除BC;利用SKIPIF1<0的正負即可判斷作答.【詳解】對于B,SKIPIF1<0,SKIPIF1<0,函數(shù)SKIPIF1<0是偶函數(shù),B不是;對于C,SKIPIF1<0,SKIPIF1<0,函數(shù)SKIPIF1<0是偶函數(shù),C不是;對于D,SKIPIF1<0,SKIPIF1<0,D不是;對于A,SKIPIF1<0,SKIPIF1<0,函數(shù)SKIPIF1<0是奇函數(shù),且SKIPIF1<0,A符合題意.故選:A12.A【分析】根據(jù)給定條件,求出樣本中心點求出b值,再分段討論y的最大值情況作答.【詳解】依題意,SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0,SKIPIF1<0,得SKIPIF1<0,且SKIPIF1<0經(jīng)過點SKIPIF1<0,于是得SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0單調(diào)遞增,則當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,求導(dǎo)得:SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,即函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,當(dāng)SKIPIF1<0時,SKIPIF1<0,而SKIPIF1<0,因此當(dāng)SKIPIF1<0時,細菌數(shù)SKIPIF1<0取最大值,所以SKIPIF1<0的值為4.故選:A13.B【分析】根據(jù)函數(shù)奇偶性的定義及復(fù)合函數(shù)的單調(diào)性逐一判定即可.【詳解】由題意易得SKIPIF1<0定義域為R,SKIPIF1<0,即SKIPIF1<0為偶函數(shù),故A錯誤;令SKIPIF1<0,則SKIPIF1<0且SKIPIF1<0隨SKIPIF1<0增大而增大,此時SKIPIF1<0,由對勾函數(shù)的單調(diào)性得SKIPIF1<0單調(diào)遞增,根據(jù)復(fù)合函數(shù)的單調(diào)性原則得SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,故B正確;結(jié)合A項得SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,故C錯誤;結(jié)合B項及對勾函數(shù)的性質(zhì)得SKIPIF1<0,故D錯誤.故選:B.14.A【解析】由題意得出SKIPIF1<0、SKIPIF1<0的解析式,不等式恒成立,采用分離參數(shù)法,可得SKIPIF1<0轉(zhuǎn)化為求函數(shù)的最值,求出函數(shù)SKIPIF1<0的最大值即可.【詳解】SKIPIF1<0SKIPIF1<0為偶函數(shù),SKIPIF1<0為奇函數(shù),且SKIPIF1<0①SKIPIF1<0②①②兩式聯(lián)立可得SKIPIF1<0,SKIPIF1<0.由SKIPIF1<0得SKIPIF1<0,∵SKIPIF1<0在SKIPIF1<0為增函數(shù),∴SKIPIF1<0,故選:A.【點睛】本題主要考查函數(shù)奇偶性的應(yīng)用、考查了不等式存在有解問題以及函數(shù)的單調(diào)性求最值,注意分離參數(shù)法的應(yīng)用,此題屬于中檔題.15.C【解析】根據(jù)題意知,SKIPIF1<0,代入公式SKIPIF1<0,求出SKIPIF1<0即可.【詳解】由題意可得,SKIPIF1<0因為SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0.所以這種射線的吸收系數(shù)為SKIPIF1<0.故選:C【點睛】本題主要考查知識的遷移能力,把數(shù)學(xué)知識與物理知識相融合;重點考查指數(shù)型函數(shù),利用指數(shù)的相關(guān)性質(zhì)來研究指數(shù)型函數(shù)的性質(zhì),以及解指數(shù)型方程;屬于中檔題.16.BD【分析】分析各選項中的函數(shù)以及函數(shù)SKIPIF1<0的定義域、單調(diào)區(qū)間、奇偶性、值域都相同,結(jié)合題中定義可得出合適的選項.【詳解】函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,單調(diào)遞增區(qū)間為SKIPIF1<0,遞減區(qū)間為SKIPIF1<0,該函數(shù)為偶函數(shù),值域為SKIPIF1<0.對于A選項,令SKIPIF1<0,該函數(shù)的定義域為SKIPIF1<0,SKIPIF1<0,函數(shù)SKIPIF1<0的單調(diào)遞增區(qū)間為SKIPIF1<0,遞減區(qū)間為SKIPIF1<0,因為SKIPIF1<0,即函數(shù)SKIPIF1<0的值域為SKIPIF1<0.SKIPIF1<0,即函數(shù)SKIPIF1<0為偶函數(shù),A滿足條件;對于B選項,由SKIPIF1<0可得SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,故函數(shù)SKIPIF1<0的值域為SKIPIF1<0,B不滿足條件;對于C選項,令SKIPIF1<0,該函數(shù)的定義域為SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0且SKIPIF1<0不恒為零,所以,函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,當(dāng)SKIPIF1<0時,SKIPIF1<0,此時函數(shù)SKIPIF1<0單調(diào)遞減,當(dāng)SKIPIF1<0時,SKIPIF1<0,此時函數(shù)SKIPIF1<0單調(diào)遞增,SKIPIF1<0,故函數(shù)SKIPIF1<0的值域為SKIPIF1<0,因為SKIPIF1<0,即函數(shù)SKIPIF1<0為偶函數(shù),C滿足條件;對于D選項,函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,D不滿足條件.故選:BD.17.BCD【分析】先構(gòu)造函數(shù)SKIPIF1<0,SKIPIF1<0,判斷函數(shù)單調(diào)性并作圖,再判斷SKIPIF1<0,SKIPIF1<0,結(jié)合圖象即得兩個函數(shù)值相等時對應(yīng)自變量的大小關(guān)系.【詳解】設(shè)SKIPIF1<0,SKIPIF1<0,由初等函數(shù)的性質(zhì),可得SKIPIF1<0,SKIPIF1<0都是單調(diào)遞增函數(shù),畫出函數(shù)SKIPIF1<0,SKIPIF1<0的圖象,如圖所示,根據(jù)圖象可知,當(dāng)SKIPIF1<0時,SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0,依題意不妨設(shè)SKIPIF1<0,則SKIPIF1<0分別是直線SKIPIF1<0與函數(shù)SKIPIF1<0圖象的交點的橫坐標(biāo).當(dāng)SKIPIF1<0時,若SKIPIF1<0,則SKIPIF1<0,故A不正確;當(dāng)SKIPIF1<0或SKIPIF1<0時,若SKIPIF1<0,則SKIPIF1<0或SKIPIF1<0,故B正確;當(dāng)SKIPIF1<0時,若SKIPIF1<0,則SKIPIF1<0,故C正確;當(dāng)SKIPIF1<0時,若SKIPIF1<0,則SKIPIF1<0,故D正確.故選:BCD.【點睛】本題的解題關(guān)鍵在于結(jié)合圖象判斷SKIPIF1<0,SKIPIF1<0,即可判斷兩個函數(shù)值相等時對應(yīng)自變量的大小關(guān)系,突破難點.18.BCD【分析】A.由SKIPIF1<0得到SKIPIF1<0判斷;BC.由SKIPIF1<0,得到SKIPIF1<0判斷;D.由SKIPIF1<0,得到SKIPIF1<0,令SKIPIF1<0,用導(dǎo)數(shù)法判斷.【詳解】由SKIPIF1<0得SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,選項SKIPIF1<0錯誤;因為SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,選項SKIPIF1<0正確,因為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.令SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論