版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
第03講函數(shù)的奇偶性、對(duì)稱性與周期性(精講+精練)目錄第一部分:知識(shí)點(diǎn)精準(zhǔn)記憶第二部分:課前自我評(píng)估測(cè)試第三部分:典型例題剖析高頻考點(diǎn)一:函數(shù)奇偶性①判斷函數(shù)奇偶性②根據(jù)函數(shù)奇偶性求解析式③函數(shù)奇偶性的應(yīng)用④由函數(shù)奇偶性求參數(shù)⑤奇偶性+單調(diào)性解不等式高頻考點(diǎn)二:函數(shù)周期性及其應(yīng)用①由函數(shù)周期性求函數(shù)值②由函數(shù)周期性求解析式高頻考點(diǎn)三:函數(shù)的對(duì)稱性①由函數(shù)對(duì)稱性求解析式②由函數(shù)對(duì)稱性求函數(shù)值或參數(shù)③對(duì)稱性+奇偶性+周期性的綜合應(yīng)用第四部分:高考真題感悟第五部分:第03講函數(shù)的奇偶性、對(duì)稱性與周期性(精練)第一部分:知識(shí)點(diǎn)精準(zhǔn)記憶第一部分:知識(shí)點(diǎn)精準(zhǔn)記憶1、函數(shù)的奇偶性(1)函數(shù)奇偶性定義奇偶性定義圖象特點(diǎn)偶函數(shù)如果對(duì)于函數(shù)SKIPIF1<0的定義域內(nèi)任意一個(gè)SKIPIF1<0,都有SKIPIF1<0,那么函數(shù)SKIPIF1<0是偶函數(shù)圖象關(guān)于SKIPIF1<0軸對(duì)稱奇函數(shù)如果對(duì)于函數(shù)SKIPIF1<0的定義域內(nèi)任意一個(gè)SKIPIF1<0,都有SKIPIF1<0,那么函數(shù)SKIPIF1<0是奇函數(shù)圖象關(guān)于原點(diǎn)對(duì)稱注意:由函數(shù)奇偶性的定義可知,函數(shù)具有奇偶性的一個(gè)前提條件是:對(duì)于定義域內(nèi)的任意一個(gè)x,SKIPIF1<0也在定義域內(nèi)(即定義域關(guān)于原點(diǎn)對(duì)稱).(2)常用結(jié)論與技巧:①對(duì)數(shù)型復(fù)合函數(shù)判斷奇偶性常用SKIPIF1<0或SKIPIF1<0來判斷奇偶性.②SKIPIF1<0,SKIPIF1<0在它們的公共定義域上有下面的結(jié)論:SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0偶函數(shù)偶函數(shù)偶函數(shù)偶函數(shù)偶函數(shù)偶函數(shù)偶函數(shù)奇函數(shù)不能確定不能確定奇函數(shù)奇函數(shù)奇函數(shù)偶函數(shù)不能確定不能確定奇函數(shù)奇函數(shù)奇函數(shù)奇函數(shù)奇函數(shù)奇函數(shù)偶函數(shù)偶函數(shù)③若SKIPIF1<0是定義在區(qū)間SKIPIF1<0上奇函數(shù),且SKIPIF1<0,則SKIPIF1<0(注意:反之不成立)2、函數(shù)對(duì)稱性(異號(hào)對(duì)稱)(1)軸對(duì)稱:若函數(shù)SKIPIF1<0關(guān)于直線SKIPIF1<0對(duì)稱,則①SKIPIF1<0;②SKIPIF1<0;③SKIPIF1<0(2)點(diǎn)對(duì)稱:若函數(shù)SKIPIF1<0關(guān)于直線SKIPIF1<0對(duì)稱,則①SKIPIF1<0②SKIPIF1<0③SKIPIF1<0(2)點(diǎn)對(duì)稱:若函數(shù)SKIPIF1<0關(guān)于直線SKIPIF1<0對(duì)稱,則①SKIPIF1<0②SKIPIF1<0③SKIPIF1<03、函數(shù)周期性(同號(hào)周期)(1)周期函數(shù)定義對(duì)于函數(shù)SKIPIF1<0,如果存在一個(gè)非零常數(shù)SKIPIF1<0,使得當(dāng)SKIPIF1<0取定義域內(nèi)的任何值時(shí),都有SKIPIF1<0,那么就稱函數(shù)SKIPIF1<0為周期函數(shù),稱SKIPIF1<0為這個(gè)函數(shù)的周期,則SKIPIF1<0(SKIPIF1<0)也是這個(gè)函數(shù)的周期.(2)最小正周期如果在周期函數(shù)SKIPIF1<0的所有周期中存在一個(gè)最小的正數(shù),那么這個(gè)最小的正數(shù)就叫做SKIPIF1<0的最小正周期(若不特別說明,SKIPIF1<0一般都是指最小正周期).注意:并不是所有周期函數(shù)都有最小正周期.(3)函數(shù)周期性的常用結(jié)論與技巧設(shè)函數(shù)SKIPIF1<0,SKIPIF1<0.①若SKIPIF1<0,則函數(shù)的周期SKIPIF1<0;②若SKIPIF1<0,則函數(shù)的周期SKIPIF1<0;③若SKIPIF1<0,則函數(shù)的周期SKIPIF1<0;④若SKIPIF1<0,則函數(shù)的周期SKIPIF1<0;⑤SKIPIF1<0,則函數(shù)的周期SKIPIF1<0第二部分:課前自我評(píng)估測(cè)試第二部分:課前自我評(píng)估測(cè)試1.(2022·北京·高三學(xué)業(yè)考試)已知函數(shù)SKIPIF1<0,則(
)A.SKIPIF1<0是奇函數(shù) B.SKIPIF1<0是偶函數(shù)C.SKIPIF1<0既是奇函數(shù)又是偶函數(shù) D.SKIPIF1<0既不是奇函數(shù)也不是偶函數(shù)2.(2022·浙江臺(tái)州·高一期末)設(shè)f(x)是定義在R上的奇函數(shù),若SKIPIF1<0,則f(1)=(
)A.-1 B.0 C.1 D.23.(2022·全國(guó)·高三專題練習(xí))若SKIPIF1<0是定義在SKIPIF1<0上的奇函數(shù),且SKIPIF1<0,則SKIPIF1<0的值為(
)A.1 B.2 C.0 D.SKIPIF1<04.(2021·全國(guó)·高一課時(shí)練習(xí))若SKIPIF1<0的偶函數(shù),其定義域?yàn)镾KIPIF1<0,且在SKIPIF1<0上是減函數(shù),則SKIPIF1<0與SKIPIF1<0得大小關(guān)系是A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.不能確定5.(2021·河南·新蔡縣第一高級(jí)中學(xué)高三階段練習(xí)(文))已知函數(shù)f(x)為定義在R上的奇函數(shù),且SKIPIF1<0,則SKIPIF1<0(
)A.2019 B.3 C.-3 D.0第三部分:典型例題剖析第三部分:典型例題剖析高頻考點(diǎn)一:函數(shù)奇偶性①判斷函數(shù)奇偶性1.(2021·廣東·汕頭市潮陽(yáng)區(qū)河溪中學(xué)高二期中)下列函數(shù)在其定義域內(nèi)為奇函數(shù)的是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<02.(2021·江蘇·高一單元測(cè)試)函數(shù)SKIPIF1<0為奇函數(shù),SKIPIF1<0為偶函數(shù),在公共定義域內(nèi),下列結(jié)論一定正確的是(
)A.SKIPIF1<0為奇函數(shù) B.SKIPIF1<0為偶函數(shù)C.SKIPIF1<0為奇函數(shù) D.SKIPIF1<0為偶函數(shù)3.(2021·廣東·龍門縣高級(jí)中學(xué)高一期中)給定函數(shù):①SKIPIF1<0;②SKIPIF1<0;③SKIPIF1<0;④SKIPIF1<0.其中奇函數(shù)是(
).A.①② B.③④ C.②④ D.①③②根據(jù)函數(shù)奇偶性求解析式1.(2021·四川省南充高級(jí)中學(xué)高一階段練習(xí))若函數(shù)SKIPIF1<0是定義在SKIPIF1<0上的偶函數(shù),則該函數(shù)的最大值為(
)A.10 B.5 C.3 D.22.(2021·寧夏·銀川一中高一期中)已知SKIPIF1<0是定義域?yàn)镽的偶函數(shù),當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則函數(shù)SKIPIF1<0在SKIPIF1<0時(shí),SKIPIF1<0=___________.3.(2021·江蘇·南京外國(guó)語學(xué)校高一期中)設(shè)m為實(shí)數(shù),若函數(shù)SKIPIF1<0(SKIPIF1<0)是偶函數(shù),則m的值為__________.4.(2021·全國(guó)·高一課前預(yù)習(xí))已知SKIPIF1<0是SKIPIF1<0上的奇函數(shù),且當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,求SKIPIF1<0的解析式.③函數(shù)奇偶性的應(yīng)用1.(2022·湖南·長(zhǎng)沙市南雅中學(xué)高三階段練習(xí))設(shè)f(x)是周期為2的奇函數(shù),當(dāng)0≤x≤1時(shí),f(x)=2x,則SKIPIF1<0=________.2.(2022·廣東茂名·高一期末)若函數(shù)SKIPIF1<0是奇函數(shù),則SKIPIF1<0__________.3.(2022·四川涼山·高一期末)已知SKIPIF1<0,SKIPIF1<0分別是定義在R上的偶函數(shù)和奇函數(shù),且SKIPIF1<0,則SKIPIF1<0______.4.(2022·湖南·一模)已知SKIPIF1<0是奇函數(shù),且SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0___.④由函數(shù)奇偶性求參數(shù)1.(2022·內(nèi)蒙古包頭·高三期末(文))已知函數(shù)SKIPIF1<0是偶函數(shù),則SKIPIF1<0______.2.(2022·海南·模擬預(yù)測(cè))已知函數(shù)SKIPIF1<0是定義在SKIPIF1<0上的奇函數(shù),則SKIPIF1<0______.3.(2022·湖北·石首市第一中學(xué)高一階段練習(xí))已知函數(shù)SKIPIF1<0為奇函數(shù),則SKIPIF1<0_______.4.(2022·黑龍江·佳木斯一中高一期末)SKIPIF1<0為偶函數(shù),則SKIPIF1<0___________.⑤奇偶性+單調(diào)性解不等式1.(2022·廣西南寧·高一期末)若函數(shù)SKIPIF1<0是定義在SKIPIF1<0上的偶函數(shù),在SKIPIF1<0上單調(diào)遞減,且SKIPIF1<0,則使得SKIPIF1<0的SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0D.SKIPIF1<02.(2022·云南麗江·高一期末)已知函數(shù)SKIPIF1<0,若SKIPIF1<0,則實(shí)數(shù)SKIPIF1<0的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<03.(2022·四川綿陽(yáng)·高一期末)若SKIPIF1<0,則滿足SKIPIF1<0的SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<04.(2022·廣東汕尾·高一期末)函數(shù)SKIPIF1<0為奇函數(shù),且對(duì)任意互不相等的SKIPIF1<0,SKIPIF1<0,都有SKIPIF1<0成立,且SKIPIF1<0,則SKIPIF1<0的解集為______.5.(2022·甘肅省武威第一中學(xué)高一開學(xué)考試)設(shè)偶函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增,則滿足SKIPIF1<0的x的取值范圍是___________.6.(2022·湖北大學(xué)附屬中學(xué)高一階段練習(xí))SKIPIF1<0是奇函數(shù)(1)求SKIPIF1<0(2)判斷并證明SKIPIF1<0的單調(diào)性(3)若SKIPIF1<0,求SKIPIF1<0的取值范圍高頻考點(diǎn)二:函數(shù)周期性及其應(yīng)用①由函數(shù)周期性求函數(shù)值1.(2021·北京·人大附中高一期中)已知定義在SKIPIF1<0上的奇函數(shù),SKIPIF1<0滿足SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<02.(2022·甘肅·一模(文))定義在SKIPIF1<0上的奇函數(shù)SKIPIF1<0,滿足SKIPIF1<0,且當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0(
)A.8 B.2 C.-2 D.-83.(2021·廣東汕頭·高二期末)已知函數(shù)SKIPIF1<0是奇函數(shù),且滿足SKIPIF1<0,若當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0________.②由函數(shù)周期性求解析式1.(2021·北京市十一學(xué)校高一期中)若定義在R上的奇函數(shù)SKIPIF1<0滿足SKIPIF1<0,且SKIPIF1<0時(shí)SKIPIF1<0,則:(1)SKIPIF1<0__________;(2)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0_________.2.(2022·全國(guó)·高三專題練習(xí))已知函數(shù)SKIPIF1<0是定義域?yàn)镽的偶函數(shù),且周期為2,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則當(dāng)SKIPIF1<0時(shí),SKIPIF1<0________.3.(2022·全國(guó)·高三專題練習(xí))已知函數(shù)SKIPIF1<0對(duì)任意實(shí)數(shù)SKIPIF1<0都有SKIPIF1<0,且當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.(1)求SKIPIF1<0,SKIPIF1<0的值;(2)寫出SKIPIF1<0在SKIPIF1<0,SKIPIF1<0上的解析式;(3)當(dāng)SKIPIF1<0,SKIPIF1<0時(shí),求不等式SKIPIF1<0的解集.4.(2021·山東師范大學(xué)附中高三期中)設(shè)SKIPIF1<0是定義在SKIPIF1<0上的奇函數(shù),且對(duì)任意實(shí)數(shù)SKIPIF1<0,恒有SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.(1)當(dāng)SKIPIF1<0時(shí),求SKIPIF1<0的解析式;(2)計(jì)算SKIPIF1<0.高頻考點(diǎn)三:函數(shù)的對(duì)稱性①由函數(shù)對(duì)稱性求解析式1.(2022·廣東·高三開學(xué)考試)下列函數(shù)與SKIPIF1<0關(guān)于SKIPIF1<0對(duì)稱的是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<02.(2022·浙江·高三專題練習(xí))已知函數(shù)SKIPIF1<0的圖象與函數(shù)SKIPIF1<0的圖象關(guān)于SKIPIF1<0軸對(duì)稱,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<03.(2022·全國(guó)·高三專題練習(xí))已知函數(shù)SKIPIF1<0滿足:①SKIPIF1<0;②在SKIPIF1<0上是減函數(shù);③SKIPIF1<0.請(qǐng)寫出一個(gè)滿足以上條件的SKIPIF1<0___________.4.(2022·全國(guó)·高三專題練習(xí))已知函數(shù)SKIPIF1<0,滿足SKIPIF1<0,則SKIPIF1<0______.③由函數(shù)對(duì)稱性求函數(shù)值或參數(shù)1.(2021·江西·景德鎮(zhèn)一中高二期末(文))已知函數(shù)SKIPIF1<0是定義在SKIPIF1<0上的奇函數(shù),且SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0(
)A.2 B.SKIPIF1<0 C.4 D.SKIPIF1<02.(2021·全國(guó)·高一專題練習(xí))已知函數(shù)SKIPIF1<0,記SKIPIF1<0SKIPIF1<0,則SKIPIF1<0A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<03.(2022·四川雅安·高一期末)若SKIPIF1<0,則SKIPIF1<0___________.4.(2021·上海·高一專題練習(xí))SKIPIF1<0的對(duì)稱中心為SKIPIF1<0,則a的值為___________.5.(2021·全國(guó)·高一專題練習(xí))已知函數(shù)f(x)=SKIPIF1<0.(1)求f(2)與fSKIPIF1<0,f(3)與fSKIPIF1<0;(2)由(1)中求得的結(jié)果,你能發(fā)現(xiàn)f(x)與fSKIPIF1<0有什么關(guān)系?證明你的發(fā)現(xiàn);(3)求f(2)+fSKIPIF1<0+f(3)+fSKIPIF1<0+SKIPIF1<0+f(2019)+fSKIPIF1<0的值.④對(duì)稱性+奇偶性+周期性的綜合應(yīng)用1.(2022·四川涼山·二模(文))定義在SKIPIF1<0上的奇函數(shù)SKIPIF1<0,滿足SKIPIF1<0,當(dāng)SKIPIF1<0時(shí)SKIPIF1<0,則SKIPIF1<0的解集為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<02.(2022·重慶·西南大學(xué)附中模擬預(yù)測(cè))函數(shù)SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則關(guān)于x的方程SKIPIF1<0在SKIPIF1<0上的解的個(gè)數(shù)是(
)A.1010 B.1011 C.1012 D.10133.(多選)(2022·甘肅·蘭州一中高一期末)定義在R上的偶函數(shù)f(x)滿足SKIPIF1<0,且在SKIPIF1<0上是增函數(shù),則下列關(guān)于f(x)的結(jié)論中正確的有(
)A.f(x)的圖象關(guān)于直線SKIPIF1<0對(duì)稱 B.f(x)在[0,1]上是增函數(shù)C.f(x)在[1,2]上是減函數(shù) D.SKIPIF1<04.(多選)(2022·全國(guó)·高三專題練習(xí))已知定義在SKIPIF1<0上的函數(shù)SKIPIF1<0滿足SKIPIF1<0,且SKIPIF1<0,則(
)A.SKIPIF1<0為奇函數(shù) B.SKIPIF1<0的圖象關(guān)于SKIPIF1<0對(duì)稱C.SKIPIF1<0為偶函數(shù) D.SKIPIF1<0是周期為4的函數(shù)5.(2022·重慶九龍坡·高一期末)若函數(shù)SKIPIF1<0滿足SKIPIF1<0,且SKIPIF1<0時(shí),SKIPIF1<0,已知函數(shù)SKIPIF1<0,則函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)的零點(diǎn)的個(gè)數(shù)為__________.第四部分:高考真題感悟第四部分:高考真題感悟1.(2021·全國(guó)·高考真題(文))設(shè)SKIPIF1<0是定義域?yàn)镽的奇函數(shù),且SKIPIF1<0.若SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<02.(2021·全國(guó)·高考真題)已知函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,SKIPIF1<0為偶函數(shù),SKIPIF1<0為奇函數(shù),則(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<03.(2021·江蘇·高考真題)已知奇函數(shù)SKIPIF1<0是定義在SKIPIF1<0上的單調(diào)函數(shù),若正實(shí)數(shù)SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0則SKIPIF1<0的最小值是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.2 D.44.(2021·全國(guó)·高考真題(理))設(shè)函數(shù)SKIPIF1<0的定義域?yàn)镽,SKIPIF1<0為奇函數(shù),SKIPIF1<0為偶函數(shù),當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.若SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<05.(2021·湖南·高考真題)已知函數(shù)SKIPIF1<0為奇函數(shù),SKIPIF1<0.若SKIPIF1<0,則SKIPIF1<0____________6.(2021·全國(guó)·高考真題)已知函數(shù)SKIPIF1<0是偶函數(shù),則SKIPIF1<0______.第五部分:第03講函數(shù)的奇偶性、對(duì)稱性與周期性(精練)第五部分:第03講函數(shù)的奇偶性、對(duì)稱性與周期性(精練)1.(2022·山西·懷仁市第一中學(xué)校二模(理))已知函數(shù)SKIPIF1<0為R上的奇函數(shù),當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0等于(
)A.-3 B.-1 C.1 D.32.(2022·山西呂梁·一模(文))已知函數(shù)SKIPIF1<0為定義在R上的奇函數(shù),且當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則當(dāng)SKIPIF1<0時(shí),SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<03.(2022·江蘇·南京師大附中高一期末)定義在SKIPIF1<0上的偶函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增,若SKIPIF1<0,則SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<04.(2022·全國(guó)·高三專題練習(xí)(文))已知定義在SKIPIF1<0上的偶函數(shù)SKIPIF1<0,對(duì)SKIPIF1<0,有SKIPIF1<0成立,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<05.(2022·全國(guó)·高三專題練習(xí))已知函數(shù)SKIPIF1<0的圖象關(guān)于原點(diǎn)對(duì)稱,且滿足SKIPIF1<0,且當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<06.(2022·陜西咸陽(yáng)·二模(理))已知函數(shù)SKIPIF1<0為定義在R上的奇函數(shù),且SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0(
)A.2021 B.1 C.SKIPIF1<0 D.07.(2022·山西·懷仁市第一中學(xué)校二模(文))已知SKIPIF1<0是定義在SKIPIF1<0上的奇函數(shù),SKIPIF1<0為偶函數(shù),且當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0(
)A.4 B.3 C.2 D.18.(2022·廣東·執(zhí)信中學(xué)高一階段練習(xí))已知在R上的函數(shù)SKIPIF1<0滿足對(duì)于任意實(shí)數(shù)SKIPIF1<0都有SKIPIF1<0,SKIPIF1<0,且在區(qū)間SKIPIF1<0上只有SKIPIF1<0和SKIPIF1<0兩個(gè)零點(diǎn),則SKIPIF1<0在區(qū)間SKIPIF1<0上根的個(gè)數(shù)為()A.404 B.405 C.406 D.203二、填空題9.(2022·上海市復(fù)興高級(jí)中學(xué)高一階段練習(xí))已知SKIPIF1<0,若SKIPIF1<0,則實(shí)數(shù)SKIPIF1<0的取值范圍是______10.(2022·江西·新余市第一中學(xué)高一開學(xué)考試)已知函數(shù)SKIPIF1<0滿足SKIPIF1<0,且當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0________.11.(2022·重慶巴蜀中學(xué)高一期末)已知定義在區(qū)間
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 養(yǎng)老院環(huán)境衛(wèi)生管理制度
- 主題班會(huì)課件:憤怒情緒的調(diào)控
- 《用法律保護(hù)自己》課件
- 《OGNL與標(biāo)簽庫(kù)》課件
- 教育局聘任小學(xué)校長(zhǎng)協(xié)議書(2篇)
- 2024年版財(cái)產(chǎn)分割協(xié)議:離婚雙方適用2篇
- 2024年度塔吊司機(jī)承包勞務(wù)合作協(xié)議書3篇
- 2024年版標(biāo)準(zhǔn)化建筑工程協(xié)議范本版
- 2025年陽(yáng)泉道路運(yùn)輸從業(yè)人員資格考試內(nèi)容有哪些
- 2025年拉薩貨運(yùn)從業(yè)資格證模擬考試保過版
- VOC廢氣催化氧化技術(shù)的工程實(shí)施方案設(shè)計(jì)
- 消防維保技術(shù)投標(biāo)書
- 辦公設(shè)備租賃方案
- 老年人中醫(yī)養(yǎng)生健康知識(shí)講座
- 年度品質(zhì)計(jì)劃書
- 小分子水可行性方案
- 三年級(jí)上冊(cè)《勞動(dòng)》期末試卷及答案
- 四等水準(zhǔn)測(cè)量記錄表格
- 機(jī)械設(shè)計(jì)基礎(chǔ)課程設(shè)計(jì)說明書-帶式運(yùn)輸機(jī)的單級(jí)直齒圓柱齒輪減速器
- 質(zhì)量手冊(cè)培訓(xùn)課件
- 《赤壁之戰(zhàn)》課文講解
評(píng)論
0/150
提交評(píng)論