2025屆山東省新泰市第二中學(xué)高考數(shù)學(xué)一模試卷含解析_第1頁
2025屆山東省新泰市第二中學(xué)高考數(shù)學(xué)一模試卷含解析_第2頁
2025屆山東省新泰市第二中學(xué)高考數(shù)學(xué)一模試卷含解析_第3頁
2025屆山東省新泰市第二中學(xué)高考數(shù)學(xué)一模試卷含解析_第4頁
2025屆山東省新泰市第二中學(xué)高考數(shù)學(xué)一模試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2025屆山東省新泰市第二中學(xué)高考數(shù)學(xué)一模試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知橢圓的左、右焦點(diǎn)分別為、,過點(diǎn)的直線與橢圓交于、兩點(diǎn).若的內(nèi)切圓與線段在其中點(diǎn)處相切,與相切于點(diǎn),則橢圓的離心率為()A. B. C. D.2.若的展開式中的常數(shù)項(xiàng)為-12,則實(shí)數(shù)的值為()A.-2 B.-3 C.2 D.33.已知函數(shù)為奇函數(shù),則()A. B.1 C.2 D.34.在空間直角坐標(biāo)系中,四面體各頂點(diǎn)坐標(biāo)分別為:.假設(shè)螞蟻窩在點(diǎn),一只螞蟻從點(diǎn)出發(fā),需要在,上分別任意選擇一點(diǎn)留下信息,然后再返回點(diǎn).那么完成這個(gè)工作所需要走的最短路徑長度是()A. B. C. D.5.若點(diǎn)(2,k)到直線5x-12y+6=0的距離是4,則k的值是()A.1 B.-3 C.1或 D.-3或6.已知雙曲線:,,為其左、右焦點(diǎn),直線過右焦點(diǎn),與雙曲線的右支交于,兩點(diǎn),且點(diǎn)在軸上方,若,則直線的斜率為()A. B. C. D.7.函數(shù)的一個(gè)零點(diǎn)在區(qū)間內(nèi),則實(shí)數(shù)a的取值范圍是()A. B. C. D.8.已知函數(shù),,若存在實(shí)數(shù),使成立,則正數(shù)的取值范圍為()A. B. C. D.9.如圖,平面四邊形中,,,,為等邊三角形,現(xiàn)將沿翻折,使點(diǎn)移動(dòng)至點(diǎn),且,則三棱錐的外接球的表面積為()A. B. C. D.10.已知函數(shù)f(x)=,若關(guān)于x的方程f(x)=kx-恰有4個(gè)不相等的實(shí)數(shù)根,則實(shí)數(shù)k的取值范圍是()A. B.C. D.11.設(shè)是虛數(shù)單位,復(fù)數(shù)()A. B. C. D.12.等差數(shù)列的前項(xiàng)和為,若,,則數(shù)列的公差為()A.-2 B.2 C.4 D.7二、填空題:本題共4小題,每小題5分,共20分。13.已知為矩形的對(duì)角線的交點(diǎn),現(xiàn)從這5個(gè)點(diǎn)中任選3個(gè)點(diǎn),則這3個(gè)點(diǎn)不共線的概率為________.14.運(yùn)行下面的算法偽代碼,輸出的結(jié)果為_____.15.已知數(shù)列的前項(xiàng)和且,設(shè),則的值等于_______________.16.在正方體中,已知點(diǎn)在直線上運(yùn)動(dòng),則下列四個(gè)命題中:①三棱錐的體積不變;②;③當(dāng)為中點(diǎn)時(shí),二面角的余弦值為;④若正方體的棱長為2,則的最小值為;其中說法正確的是____________(寫出所有說法正確的編號(hào))三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在銳角中,角A,B,C所對(duì)的邊分別為a,b,c.已知.(1)求的值;(2)當(dāng),且時(shí),求的面積.18.(12分)已知橢圓的離心率為,且過點(diǎn).(Ⅰ)求橢圓的方程;(Ⅱ)設(shè)是橢圓上且不在軸上的一個(gè)動(dòng)點(diǎn),為坐標(biāo)原點(diǎn),過右焦點(diǎn)作的平行線交橢圓于、兩個(gè)不同的點(diǎn),求的值.19.(12分)已知等差數(shù)列an,和等比數(shù)列b(I)求數(shù)列{an}(II)求數(shù)列n2an?a20.(12分)已知(1)當(dāng)時(shí),判斷函數(shù)的極值點(diǎn)的個(gè)數(shù);(2)記,若存在實(shí)數(shù),使直線與函數(shù)的圖象交于不同的兩點(diǎn),求證:.21.(12分)如圖所示,在三棱錐中,,,,點(diǎn)為中點(diǎn).(1)求證:平面平面;(2)若點(diǎn)為中點(diǎn),求平面與平面所成銳二面角的余弦值.22.(10分)已知函數(shù).(1)若在上為單調(diào)函數(shù),求實(shí)數(shù)a的取值范圍:(2)若,記的兩個(gè)極值點(diǎn)為,,記的最大值與最小值分別為M,m,求的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】

可設(shè)的內(nèi)切圓的圓心為,設(shè),,可得,由切線的性質(zhì):切線長相等推得,解得、,并設(shè),求得的值,推得為等邊三角形,由焦距為三角形的高,結(jié)合離心率公式可得所求值.【詳解】可設(shè)的內(nèi)切圓的圓心為,為切點(diǎn),且為中點(diǎn),,設(shè),,則,且有,解得,,設(shè),,設(shè)圓切于點(diǎn),則,,由,解得,,,所以為等邊三角形,所以,,解得.因此,該橢圓的離心率為.故選:D.【點(diǎn)睛】本題考查橢圓的定義和性質(zhì),注意運(yùn)用三角形的內(nèi)心性質(zhì)和等邊三角形的性質(zhì),切線的性質(zhì),考查化簡運(yùn)算能力,屬于中檔題.2、C【解析】

先研究的展開式的通項(xiàng),再分中,取和兩種情況求解.【詳解】因?yàn)榈恼归_式的通項(xiàng)為,所以的展開式中的常數(shù)項(xiàng)為:,解得,故選:C.【點(diǎn)睛】本題主要考查二項(xiàng)式定理的通項(xiàng)公式,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.3、B【解析】

根據(jù)整體的奇偶性和部分的奇偶性,判斷出的值.【詳解】依題意是奇函數(shù).而為奇函數(shù),為偶函數(shù),所以為偶函數(shù),故,也即,化簡得,所以.故選:B【點(diǎn)睛】本小題主要考查根據(jù)函數(shù)的奇偶性求參數(shù)值,屬于基礎(chǔ)題.4、C【解析】

將四面體沿著劈開,展開后最短路徑就是的邊,在中,利用余弦定理即可求解.【詳解】將四面體沿著劈開,展開后如下圖所示:最短路徑就是的邊.易求得,由,知,由余弦定理知其中,∴故選:C【點(diǎn)睛】本題考查了余弦定理解三角形,需熟記定理的內(nèi)容,考查了學(xué)生的空間想象能力,屬于中檔題.5、D【解析】

由題得,解方程即得k的值.【詳解】由題得,解方程即得k=-3或.故答案為:D【點(diǎn)睛】(1)本題主要考查點(diǎn)到直線的距離公式,意在考查學(xué)生對(duì)該知識(shí)的掌握水平和計(jì)算推理能力.(2)點(diǎn)到直線的距離.6、D【解析】

由|AF2|=3|BF2|,可得.設(shè)直線l的方程x=my+,m>0,設(shè),,即y1=﹣3y2①,聯(lián)立直線l與曲線C,得y1+y2=-②,y1y2=③,求出m的值即可求出直線的斜率.【詳解】雙曲線C:,F(xiàn)1,F(xiàn)2為左、右焦點(diǎn),則F2(,0),設(shè)直線l的方程x=my+,m>0,∵雙曲線的漸近線方程為x=±2y,∴m≠±2,設(shè)A(x1,y1),B(x2,y2),且y1>0,由|AF2|=3|BF2|,∴,∴y1=﹣3y2①由,得∴△=(2m)2﹣4(m2﹣4)>0,即m2+4>0恒成立,∴y1+y2=②,y1y2=③,聯(lián)立①②得,聯(lián)立①③得,,即:,,解得:,直線的斜率為,故選D.【點(diǎn)睛】本題考查直線與雙曲線的位置關(guān)系,考查韋達(dá)定理的運(yùn)用,考查向量知識(shí),屬于中檔題.7、C【解析】

顯然函數(shù)在區(qū)間內(nèi)連續(xù),由的一個(gè)零點(diǎn)在區(qū)間內(nèi),則,即可求解.【詳解】由題,顯然函數(shù)在區(qū)間內(nèi)連續(xù),因?yàn)榈囊粋€(gè)零點(diǎn)在區(qū)間內(nèi),所以,即,解得,故選:C【點(diǎn)睛】本題考查零點(diǎn)存在性定理的應(yīng)用,屬于基礎(chǔ)題.8、A【解析】

根據(jù)實(shí)數(shù)滿足的等量關(guān)系,代入后將方程變形,構(gòu)造函數(shù),并由導(dǎo)函數(shù)求得的最大值;由基本不等式可求得的最小值,結(jié)合存在性問題的求法,即可求得正數(shù)的取值范圍.【詳解】函數(shù),,由題意得,即,令,∴,∴在上單調(diào)遞增,在上單調(diào)遞減,∴,而,當(dāng)且僅當(dāng),即當(dāng)時(shí),等號(hào)成立,∴,∴.故選:A.【點(diǎn)睛】本題考查了導(dǎo)數(shù)在求函數(shù)最值中的應(yīng)用,由基本不等式求函數(shù)的最值,存在性成立問題的解法,屬于中檔題.9、A【解析】

將三棱錐補(bǔ)形為如圖所示的三棱柱,則它們的外接球相同,由此易知外接球球心應(yīng)在棱柱上下底面三角形的外心連線上,在中,計(jì)算半徑即可.【詳解】由,,可知平面.將三棱錐補(bǔ)形為如圖所示的三棱柱,則它們的外接球相同.由此易知外接球球心應(yīng)在棱柱上下底面三角形的外心連線上,記的外心為,由為等邊三角形,可得.又,故在中,,此即為外接球半徑,從而外接球表面積為.故選:A【點(diǎn)睛】本題考查了三棱錐外接球的表面積,考查了學(xué)生空間想象,邏輯推理,綜合分析,數(shù)學(xué)運(yùn)算的能力,屬于較難題.10、D【解析】

由已知可將問題轉(zhuǎn)化為:y=f(x)的圖象和直線y=kx-有4個(gè)交點(diǎn),作出圖象,由圖可得:點(diǎn)(1,0)必須在直線y=kx-的下方,即可求得:k>;再求得直線y=kx-和y=lnx相切時(shí),k=;結(jié)合圖象即可得解.【詳解】若關(guān)于x的方程f(x)=kx-恰有4個(gè)不相等的實(shí)數(shù)根,則y=f(x)的圖象和直線y=kx-有4個(gè)交點(diǎn).作出函數(shù)y=f(x)的圖象,如圖,故點(diǎn)(1,0)在直線y=kx-的下方.∴k×1->0,解得k>.當(dāng)直線y=kx-和y=lnx相切時(shí),設(shè)切點(diǎn)橫坐標(biāo)為m,則k==,∴m=.此時(shí),k==,f(x)的圖象和直線y=kx-有3個(gè)交點(diǎn),不滿足條件,故所求k的取值范圍是,故選D..【點(diǎn)睛】本題主要考查了函數(shù)與方程思想及轉(zhuǎn)化能力,還考查了導(dǎo)數(shù)的幾何意義及計(jì)算能力、觀察能力,屬于難題.11、D【解析】

利用復(fù)數(shù)的除法運(yùn)算,化簡復(fù)數(shù),即可求解,得到答案.【詳解】由題意,復(fù)數(shù),故選D.【點(diǎn)睛】本題主要考查了復(fù)數(shù)的除法運(yùn)算,其中解答中熟記復(fù)數(shù)的除法運(yùn)算法則是解答的關(guān)鍵,著重考查了運(yùn)算與求解能力,屬于基礎(chǔ)題.12、B【解析】

在等差數(shù)列中由等差數(shù)列公式與下標(biāo)和的性質(zhì)求得,再由等差數(shù)列通項(xiàng)公式求得公差.【詳解】在等差數(shù)列的前項(xiàng)和為,則則故選:B【點(diǎn)睛】本題考查等差數(shù)列中求由已知關(guān)系求公差,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

基本事件總數(shù),這3個(gè)點(diǎn)共線的情況有兩種和,由此能求出這3個(gè)點(diǎn)不共線的概率.【詳解】解:為矩形的對(duì)角線的交點(diǎn),現(xiàn)從,,,,這5個(gè)點(diǎn)中任選3個(gè)點(diǎn),基本事件總數(shù),這3個(gè)點(diǎn)共線的情況有兩種和,這3個(gè)點(diǎn)不共線的概率為.故答案為:.【點(diǎn)睛】本題考查概率的求法,考查對(duì)立事件概率計(jì)算公式等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,屬于基礎(chǔ)題.14、【解析】

模擬程序的運(yùn)行過程知該程序運(yùn)行后計(jì)算并輸出的值,用裂項(xiàng)相消法求和即可.【詳解】模擬程序的運(yùn)行過程知,該程序運(yùn)行后執(zhí)行:.故答案為:【點(diǎn)睛】本題考查算法語句中的循環(huán)語句和裂項(xiàng)相消法求和;掌握循環(huán)體執(zhí)行的次數(shù)是求解本題的關(guān)鍵;屬于基礎(chǔ)題.15、7【解析】

根據(jù)題意,當(dāng)時(shí),,可得,進(jìn)而得數(shù)列為等比數(shù)列,再計(jì)算可得,進(jìn)而可得結(jié)論.【詳解】由題意,當(dāng)時(shí),,又,解得,當(dāng)時(shí),由,所以,,即,故數(shù)列是以為首項(xiàng),為公比的等比數(shù)列,故,又,,所以,.故答案為:.【點(diǎn)睛】本題考查了數(shù)列遞推關(guān)系、函數(shù)求值,考查了推理能力與計(jì)算能力,計(jì)算得是解決本題的關(guān)鍵,屬于中檔題.16、①②④【解析】

①∵,∴平面

,得出上任意一點(diǎn)到平面的距離相等,所以判斷命題①;②由已知得出點(diǎn)P在面上的射影在上,根據(jù)線面垂直的判定和性質(zhì)或三垂線定理,可判斷命題②;③當(dāng)為中點(diǎn)時(shí),以點(diǎn)D為坐標(biāo)原點(diǎn),建立空間直角系,如下圖所示,運(yùn)用二面角的空間向量求解方法可求得二面角的余弦值,可判斷命題③;④過作平面交于點(diǎn),做點(diǎn)關(guān)于面對(duì)稱的點(diǎn),使得點(diǎn)在平面內(nèi),根據(jù)對(duì)稱性和兩點(diǎn)之間線段最短,可求得當(dāng)點(diǎn)在點(diǎn)時(shí),在一條直線上,取得最小值.可判斷命題④.【詳解】①∵,∴平面

,所以上任意一點(diǎn)到平面的距離相等,所以三棱錐的體積不變,所以①正確;

②在直線上運(yùn)動(dòng)時(shí),點(diǎn)P在面上的射影在上,所以DP在面上的射影在上,又,所以,所以②正確;③當(dāng)為中點(diǎn)時(shí),以點(diǎn)D為坐標(biāo)原點(diǎn),建立空間直角系,如下圖所示,設(shè)正方體的棱長為2.則:,,所以,設(shè)面的法向量為,則,即,令,則,設(shè)面的法向量為,,即,,由圖示可知,二面角是銳二面角,所以二面角的余弦值為,所以③不正確;④過作平面交于點(diǎn),做點(diǎn)關(guān)于面對(duì)稱的點(diǎn),使得點(diǎn)在平面內(nèi),則,所以,當(dāng)點(diǎn)在點(diǎn)時(shí),在一條直線上,取得最小值.因?yàn)檎襟w的棱長為2,所以設(shè)點(diǎn)的坐標(biāo)為,,,所以,所以,又所以,所以,,,故④正確.

故答案為:①②④.【點(diǎn)睛】本題考查空間里的線線,線面,面面關(guān)系,幾何體的體積,在求解空間里的兩線段的和的最小值,仍可以運(yùn)用對(duì)稱的思想,兩點(diǎn)之間線段最短進(jìn)行求解,屬于難度題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】

(1)利用二倍角公式求解即可,注意隱含條件.(2)利用(1)中的結(jié)論,結(jié)合正弦定理和同角三角函數(shù)的關(guān)系易得的值,又由求出的值,最后由正弦定理求出的值,根據(jù)三角形的面積公式即可計(jì)算得出.【詳解】(1)由已知可得,所以,因?yàn)樵阡J角中,,所以(2)因?yàn)?,所以,因?yàn)槭卿J角三角形,所以,所以.由正弦定理可得:,所以,所以【點(diǎn)睛】此類問題是高考的??碱}型,主要考查了正弦定理、三角函數(shù)以及三角恒等變換等知識(shí),同時(shí)考查了學(xué)生的基本運(yùn)算能力和利用三角公式進(jìn)行恒等變換的技能,屬于中檔題.18、(Ⅰ)(Ⅱ)1【解析】

(Ⅰ)由題,得,,解方程組,即可得到本題答案;(Ⅱ)設(shè)直線,則直線,聯(lián)立,得,聯(lián)立,得,由此即可得到本題答案.【詳解】(Ⅰ)由題可得,即,,將點(diǎn)代入方程得,即,解得,所以橢圓的方程為:;(Ⅱ)由(Ⅰ)知,設(shè)直線,則直線,聯(lián)立,整理得,所以,聯(lián)立,整理得,設(shè),則,所以,所以.【點(diǎn)睛】本題主要考查橢圓標(biāo)準(zhǔn)方程的求法以及直線與橢圓的綜合問題,考查學(xué)生的運(yùn)算求解能力.19、(I)an=2n-1,bn=【解析】

(I)直接利用等差數(shù)列,等比數(shù)列公式聯(lián)立方程計(jì)算得到答案.(II)n2【詳解】(I)a1=b解得d=2q=3,故an=2n-1(II)n=14+【點(diǎn)睛】本題考查了等差數(shù)列,等比數(shù)列,裂項(xiàng)求和,意在考查學(xué)生對(duì)于數(shù)列公式方法的綜合應(yīng)用.20、(1)沒有極值點(diǎn);(2)證明見解析【解析】

(1)求導(dǎo)可得,再求導(dǎo)可得,則在遞增,則,從而在遞增,即可判斷;(2)轉(zhuǎn)化問題為存在且,使,可得,由(1)可知,即,則,整理可得,則,設(shè),則可整理為,設(shè),利用導(dǎo)函數(shù)可得,即可求證.【詳解】(1)當(dāng)時(shí),,,所以在遞增,所以,所以在遞增,所以函數(shù)沒有極值點(diǎn).(2)由題,,若存在實(shí)數(shù),使直線與函數(shù)的圖象交于不同的兩點(diǎn),即存在且,使.由可得,,由(1)可知,可得.,所以,即,下面證明,只需證明:,令,則證,即.設(shè),那么,所以,所以,即【點(diǎn)睛】本題考查利用導(dǎo)函數(shù)求

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論