黑河學(xué)院《MySQL數(shù)據(jù)庫(kù)》2021-2022學(xué)年第一學(xué)期期末試卷_第1頁(yè)
黑河學(xué)院《MySQL數(shù)據(jù)庫(kù)》2021-2022學(xué)年第一學(xué)期期末試卷_第2頁(yè)
黑河學(xué)院《MySQL數(shù)據(jù)庫(kù)》2021-2022學(xué)年第一學(xué)期期末試卷_第3頁(yè)
黑河學(xué)院《MySQL數(shù)據(jù)庫(kù)》2021-2022學(xué)年第一學(xué)期期末試卷_第4頁(yè)
黑河學(xué)院《MySQL數(shù)據(jù)庫(kù)》2021-2022學(xué)年第一學(xué)期期末試卷_第5頁(yè)
已閱讀5頁(yè),還剩1頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁(yè),共3頁(yè)黑河學(xué)院《MySQL數(shù)據(jù)庫(kù)》

2021-2022學(xué)年第一學(xué)期期末試卷題號(hào)一二三四總分得分批閱人一、單選題(本大題共20個(gè)小題,每小題1分,共20分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在數(shù)據(jù)分析中,假設(shè)檢驗(yàn)是一種常用的統(tǒng)計(jì)方法。假設(shè)要檢驗(yàn)一種新的教學(xué)方法是否能顯著提高學(xué)生的成績(jī),以下關(guān)于假設(shè)檢驗(yàn)的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.首先需要提出原假設(shè)和備擇假設(shè),然后根據(jù)樣本數(shù)據(jù)計(jì)算檢驗(yàn)統(tǒng)計(jì)量B.如果p值小于預(yù)先設(shè)定的顯著性水平,就拒絕原假設(shè),認(rèn)為新教學(xué)方法有效C.假設(shè)檢驗(yàn)的結(jié)果完全取決于樣本數(shù)據(jù)的大小和分布,與研究問(wèn)題的實(shí)際情況無(wú)關(guān)D.可以通過(guò)控制樣本量和顯著性水平來(lái)平衡檢驗(yàn)的靈敏度和特異性2、對(duì)于一個(gè)聚類問(wèn)題,如果事先不知道聚類的類別數(shù),以下哪種方法可以幫助確定合適的類別數(shù)?()A.肘部法則B.輪廓系數(shù)C.Calinski-Harabasz指數(shù)D.以上都是3、主成分分析(PCA)是一種數(shù)據(jù)降維技術(shù)。假設(shè)要對(duì)高維數(shù)據(jù)進(jìn)行降維以便于分析和可視化,以下關(guān)于主成分分析的描述,正確的是:()A.不考慮數(shù)據(jù)的方差和相關(guān)性,直接進(jìn)行主成分提取B.提取過(guò)多的主成分,導(dǎo)致信息冗余,增加分析的復(fù)雜性C.合理確定保留的主成分?jǐn)?shù)量,使其能夠在最大程度保留原始數(shù)據(jù)信息的同時(shí)降低維度,并解釋主成分的含義D.認(rèn)為主成分分析可以適用于所有類型的數(shù)據(jù),不進(jìn)行數(shù)據(jù)的預(yù)處理和適用性評(píng)估4、在數(shù)據(jù)分析中,數(shù)據(jù)挖掘的應(yīng)用領(lǐng)域非常廣泛。以下關(guān)于數(shù)據(jù)挖掘應(yīng)用領(lǐng)域的說(shuō)法中,錯(cuò)誤的是?()A.數(shù)據(jù)挖掘可以應(yīng)用于市場(chǎng)營(yíng)銷、金融、醫(yī)療、電商等多個(gè)領(lǐng)域B.數(shù)據(jù)挖掘可以幫助企業(yè)進(jìn)行客戶細(xì)分、風(fēng)險(xiǎn)評(píng)估、產(chǎn)品推薦等工作C.數(shù)據(jù)挖掘的應(yīng)用需要結(jié)合具體的業(yè)務(wù)問(wèn)題和數(shù)據(jù)特點(diǎn),不能盲目使用D.數(shù)據(jù)挖掘只適用于大規(guī)模企業(yè),對(duì)于中小企業(yè)來(lái)說(shuō)沒(méi)有實(shí)際應(yīng)用價(jià)值5、當(dāng)分析一個(gè)在線教育平臺(tái)的課程評(píng)價(jià)數(shù)據(jù),以評(píng)估教師的教學(xué)質(zhì)量和課程的效果。考慮到評(píng)價(jià)的主觀性和多樣性,以下哪種方式可能有助于更客觀地綜合評(píng)價(jià)?()A.計(jì)算平均值B.去除極端值后計(jì)算平均值C.采用眾數(shù)D.以上都是6、在數(shù)據(jù)分析中,數(shù)據(jù)挖掘的算法有很多,其中決策樹(shù)是一種常用的算法。以下關(guān)于決策樹(shù)的描述中,錯(cuò)誤的是?()A.決策樹(shù)可以用于分類和回歸問(wèn)題B.決策樹(shù)的構(gòu)建過(guò)程是自頂向下的C.決策樹(shù)的葉子節(jié)點(diǎn)表示最終的分類結(jié)果或預(yù)測(cè)值D.決策樹(shù)的算法復(fù)雜度較低,適用于大規(guī)模數(shù)據(jù)集7、在進(jìn)行假設(shè)檢驗(yàn)時(shí),如果p值小于設(shè)定的顯著性水平(如0.05),我們通常會(huì)得出以下哪種結(jié)論?()A.拒絕原假設(shè)B.接受原假設(shè)C.無(wú)法確定是否拒絕原假設(shè)D.需要重新進(jìn)行實(shí)驗(yàn)8、當(dāng)分析兩個(gè)連續(xù)變量之間的線性關(guān)系時(shí),以下哪個(gè)統(tǒng)計(jì)量的值在-1到1之間?()A.相關(guān)系數(shù)B.決定系數(shù)C.方差膨脹因子D.協(xié)方差9、在數(shù)據(jù)分析中,若要對(duì)數(shù)據(jù)進(jìn)行預(yù)處理以去除噪聲,以下哪種方法可能會(huì)被使用?()A.中值濾波B.均值濾波C.高斯濾波D.以上都是10、在數(shù)據(jù)分析中,數(shù)據(jù)分析的流程包括多個(gè)步驟,其中數(shù)據(jù)探索是一個(gè)重要的步驟。以下關(guān)于數(shù)據(jù)探索的描述中,錯(cuò)誤的是?()A.數(shù)據(jù)探索可以幫助人們了解數(shù)據(jù)的特征和分布B.數(shù)據(jù)探索可以發(fā)現(xiàn)數(shù)據(jù)中的異常值和噪聲C.數(shù)據(jù)探索可以確定數(shù)據(jù)分析的方法和工具D.數(shù)據(jù)探索只需要對(duì)數(shù)據(jù)進(jìn)行簡(jiǎn)單的統(tǒng)計(jì)分析,無(wú)需進(jìn)行深入的挖掘和探索11、在進(jìn)行數(shù)據(jù)分析時(shí),異常值檢測(cè)是重要的環(huán)節(jié)。假設(shè)要在一組銷售數(shù)據(jù)中檢測(cè)異常值,以下關(guān)于異常值檢測(cè)的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.可以基于數(shù)據(jù)的統(tǒng)計(jì)特征,如均值和標(biāo)準(zhǔn)差,來(lái)確定異常值的范圍B.箱線圖能夠直觀地展示數(shù)據(jù)的分布情況,并幫助識(shí)別異常值C.異常值一定是錯(cuò)誤的數(shù)據(jù),應(yīng)該直接刪除,以免影響分析結(jié)果D.考慮數(shù)據(jù)的業(yè)務(wù)背景和上下文信息,有助于更準(zhǔn)確地判斷異常值12、在進(jìn)行數(shù)據(jù)分析以評(píng)估一個(gè)新的市場(chǎng)營(yíng)銷活動(dòng)的效果時(shí),比如分析活動(dòng)前后的客戶流量、購(gòu)買(mǎi)轉(zhuǎn)化率和客戶滿意度等指標(biāo)的變化。由于活動(dòng)期間可能受到其他外部因素的干擾,為了準(zhǔn)確評(píng)估活動(dòng)的貢獻(xiàn),以下哪種方法可能是合適的?()A.建立對(duì)照組進(jìn)行對(duì)比B.只關(guān)注活動(dòng)期間的數(shù)據(jù)C.忽略外部因素的影響D.憑經(jīng)驗(yàn)主觀判斷13、關(guān)于數(shù)據(jù)分析中的數(shù)據(jù)倉(cāng)庫(kù)設(shè)計(jì),假設(shè)要構(gòu)建一個(gè)企業(yè)級(jí)的數(shù)據(jù)倉(cāng)庫(kù)來(lái)支持決策制定。以下哪個(gè)設(shè)計(jì)原則可能對(duì)于數(shù)據(jù)的存儲(chǔ)、管理和查詢性能至關(guān)重要?()A.規(guī)范化設(shè)計(jì),減少數(shù)據(jù)冗余B.維度建模,便于分析和查詢C.分布式存儲(chǔ),提高可擴(kuò)展性D.不設(shè)計(jì)數(shù)據(jù)倉(cāng)庫(kù),直接使用原始業(yè)務(wù)數(shù)據(jù)庫(kù)14、數(shù)據(jù)分析中的異常檢測(cè)用于發(fā)現(xiàn)數(shù)據(jù)中的異常值或離群點(diǎn)。假設(shè)我們?cè)诜治錾a(chǎn)線上的產(chǎn)品質(zhì)量數(shù)據(jù),以下哪種異常檢測(cè)方法可能適用于檢測(cè)突然出現(xiàn)的質(zhì)量下降?()A.基于統(tǒng)計(jì)的方法B.基于距離的方法C.基于密度的方法D.以上都是15、假設(shè)我們有一組關(guān)于學(xué)生成績(jī)的數(shù)據(jù),包括語(yǔ)文、數(shù)學(xué)、英語(yǔ)等科目成績(jī),要分析這些科目成績(jī)之間的相關(guān)性,以下哪種可視化方法較為直觀?()A.熱力圖B.雷達(dá)圖C.散點(diǎn)圖矩陣D.以上都不是16、在數(shù)據(jù)挖掘中,Apriori算法常用于挖掘頻繁項(xiàng)集。以下關(guān)于Apriori算法的描述,正確的是?()A.它是一種無(wú)監(jiān)督學(xué)習(xí)算法B.它只能處理數(shù)值型數(shù)據(jù)C.它的計(jì)算復(fù)雜度較低D.它需要事先指定頻繁項(xiàng)集的支持度閾值17、數(shù)據(jù)分析中的決策樹(shù)算法具有易于理解和解釋的特點(diǎn)。假設(shè)我們要使用決策樹(shù)算法進(jìn)行分類任務(wù)。以下關(guān)于決策樹(shù)的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.決策樹(shù)通過(guò)對(duì)數(shù)據(jù)的遞歸劃分來(lái)構(gòu)建分類規(guī)則B.可以使用信息增益或基尼指數(shù)來(lái)選擇最優(yōu)的劃分屬性C.決策樹(shù)容易受到噪聲數(shù)據(jù)的影響,導(dǎo)致過(guò)擬合D.決策樹(shù)的深度越深,分類效果就一定越好18、在數(shù)據(jù)庫(kù)設(shè)計(jì)中,若要存儲(chǔ)學(xué)生的課程成績(jī),以下哪種數(shù)據(jù)類型較為合適?()A.整數(shù)型B.浮點(diǎn)型C.字符型D.日期型19、在進(jìn)行數(shù)據(jù)關(guān)聯(lián)分析時(shí),可能會(huì)遇到數(shù)據(jù)不一致的問(wèn)題。假設(shè)你要將銷售數(shù)據(jù)和客戶數(shù)據(jù)進(jìn)行關(guān)聯(lián),以下關(guān)于處理數(shù)據(jù)不一致的方法,哪一項(xiàng)是最恰當(dāng)?shù)??()A.忽略不一致的數(shù)據(jù),只關(guān)聯(lián)一致的部分B.手動(dòng)修正不一致的數(shù)據(jù),確保關(guān)聯(lián)的準(zhǔn)確性C.使用數(shù)據(jù)轉(zhuǎn)換和映射規(guī)則,將不一致的數(shù)據(jù)統(tǒng)一D.不進(jìn)行關(guān)聯(lián),直接分別分析兩組數(shù)據(jù)20、數(shù)據(jù)分析中,數(shù)據(jù)挖掘的過(guò)程包括多個(gè)步驟。以下關(guān)于數(shù)據(jù)挖掘過(guò)程的說(shuō)法中,錯(cuò)誤的是?()A.數(shù)據(jù)挖掘的過(guò)程包括數(shù)據(jù)準(zhǔn)備、數(shù)據(jù)挖掘、結(jié)果解釋和評(píng)估等步驟B.數(shù)據(jù)準(zhǔn)備階段包括數(shù)據(jù)清洗、數(shù)據(jù)集成和數(shù)據(jù)轉(zhuǎn)換等工作C.數(shù)據(jù)挖掘階段可以使用多種算法和技術(shù),如決策樹(shù)、聚類、關(guān)聯(lián)規(guī)則挖掘等D.數(shù)據(jù)挖掘的結(jié)果不需要進(jìn)行解釋和評(píng)估,直接應(yīng)用于實(shí)際問(wèn)題即可二、簡(jiǎn)答題(本大題共5個(gè)小題,共25分)1、(本題5分)在數(shù)據(jù)分析中,如何處理數(shù)據(jù)的缺失值和異常值同時(shí)存在的情況?請(qǐng)說(shuō)明綜合的處理方法和策略,并舉例說(shuō)明。2、(本題5分)簡(jiǎn)述數(shù)據(jù)分析師如何處理來(lái)自不同數(shù)據(jù)源的數(shù)據(jù)格式不一致問(wèn)題,包括數(shù)據(jù)轉(zhuǎn)換和整合的方法。3、(本題5分)簡(jiǎn)述強(qiáng)化學(xué)習(xí)的概念和應(yīng)用場(chǎng)景,說(shuō)明其與監(jiān)督學(xué)習(xí)和無(wú)監(jiān)督學(xué)習(xí)的區(qū)別,并舉例說(shuō)明強(qiáng)化學(xué)習(xí)在數(shù)據(jù)分析中的應(yīng)用。4、(本題5分)在數(shù)據(jù)分析中,數(shù)據(jù)清洗是重要的前置步驟。請(qǐng)?jiān)敿?xì)闡述數(shù)據(jù)清洗的主要任務(wù)和常用方法,并舉例說(shuō)明數(shù)據(jù)清洗在實(shí)際項(xiàng)目中的應(yīng)用。5、(本題5分)描述在數(shù)據(jù)分析中,如何使用SQL語(yǔ)言進(jìn)行數(shù)據(jù)查詢和處理,包括復(fù)雜的連接操作、聚合函數(shù)的應(yīng)用等。三、案例分析題(本大題共5個(gè)小題,共25分)1、(本題5分)一家家具制造商收集了產(chǎn)品數(shù)據(jù),包括款式、材質(zhì)、顏色、生產(chǎn)成本、銷售價(jià)格等。研究不同款式和材質(zhì)的家具在生產(chǎn)成本和銷售價(jià)格上的關(guān)系。2、(本題5分)某在線音樂(lè)平臺(tái)的搖滾音樂(lè)類目擁有用戶數(shù)據(jù),包括樂(lè)隊(duì)、歌曲熱度、粉絲互動(dòng)、演出信息等。分析樂(lè)隊(duì)知名度與歌曲熱度和粉絲互動(dòng)的關(guān)系,以及演出信息對(duì)用戶關(guān)注度的影響。3、(本題5分)某共享單車運(yùn)營(yíng)公司積累了車輛的使用頻率分布、損壞維修情況、投放區(qū)域數(shù)據(jù)等。探討怎樣利用這些數(shù)據(jù)優(yōu)化車輛投放策略和運(yùn)營(yíng)維護(hù)成本。4、(本題5分)一家房地產(chǎn)中介公司擁有房屋租賃數(shù)據(jù),包括房屋位置、戶型、面積、租金、租賃周期等。研究不同位置和戶型的房屋租金與租賃周期的關(guān)系。5、(本題5分)某在線肚皮舞教學(xué)平臺(tái)保存了學(xué)員舞蹈表現(xiàn)數(shù)據(jù)、音樂(lè)選擇偏好、服裝需求等。優(yōu)化肚皮舞教學(xué)的配套服務(wù)。四、論述題(本大題共3個(gè)小題,共30分)1、(本題10分)電信行業(yè)擁有大量的用戶通信數(shù)據(jù)和網(wǎng)絡(luò)性能數(shù)據(jù)。分析如何運(yùn)用數(shù)據(jù)分析優(yōu)化網(wǎng)絡(luò)覆蓋、提升服務(wù)質(zhì)量、進(jìn)行客戶細(xì)分和精準(zhǔn)營(yíng)銷,并討論數(shù)據(jù)分析在5G時(shí)代的新應(yīng)用和挑戰(zhàn)。2、(本題10分)旅游業(yè)積累了大量的游客

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論