版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
江蘇省揚中學市2023-2024學年中考數學最后沖刺濃縮精華卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.對于反比例函數y=﹣2xA.圖象分布在第二、四象限B.當x>0時,y隨x的增大而增大C.圖象經過點(1,﹣2)D.若點A(x1,y1),B(x2,y2)都在圖象上,且x1<x2,則y1<y22.一個圓的內接正六邊形的邊長為2,則該圓的內接正方形的邊長為()A. B.2 C.2 D.43.如圖,在菱形ABCD中,AB=5,∠BCD=120°,則△ABC的周長等于()A.20 B.15 C.10 D.54.如果將拋物線向下平移1個單位,那么所得新拋物線的表達式是A. B. C. D.5.若55+55+55+55+55=25n,則n的值為()A.10 B.6 C.5 D.36.已知關于x的不等式ax<b的解為x>-2,則下列關于x的不等式中,解為x<2的是()A.ax+2<-b+2 B.–ax-1<b-1 C.ax>b D.7.如圖,在平面直角坐標系中,正方形ABCD的頂點A的坐標為(﹣1,1),點B在x軸正半軸上,點D在第三象限的雙曲線上,過點C作CE∥x軸交雙曲線于點E,連接BE,則△BCE的面積為()A.5 B.6 C.7 D.88.如圖,四邊形ABCD內接于⊙O,若∠B=130°,則∠AOC的大小是()A.130° B.120° C.110° D.100°9.解分式方程﹣3=時,去分母可得()A.1﹣3(x﹣2)=4 B.1﹣3(x﹣2)=﹣4C.﹣1﹣3(2﹣x)=﹣4 D.1﹣3(2﹣x)=410.如圖,A、B、C是⊙O上的三點,∠B=75°,則∠AOC的度數是()A.150° B.140° C.130° D.120°二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,AB為半圓的直徑,且AB=2,半圓繞點B順時針旋轉40°,點A旋轉到A′的位置,則圖中陰影部分的面積為_____(結果保留π).12.“復興號”是我國具有完全自主知識產權、達到世界先進水平的動車組列車.“復興號”的速度比原來列車的速度每小時快50千米,提速后從北京到上海運行時間縮短了30分鐘.已知從北京到上海全程約1320千米,求“復興號”的速度.設“復興號”的速度為x千米/時,依題意,可列方程為__.13.分解因式:.14.如圖,在等腰△ABC中,AB=AC,BC邊上的高AD=6cm,腰AB上的高CE=8cm,則BC=_____cm15.圓錐的底面半徑為6㎝,母線長為10㎝,則圓錐的側面積為______cm216.如圖所示,P為∠α的邊OA上一點,且P點的坐標為(3,4),則sinα+cosα=_____.三、解答題(共8題,共72分)17.(8分)計算:2sin30°﹣|1﹣|+()﹣118.(8分)閱讀下面材料,并解答問題.材料:將分式拆分成一個整式與一個分式(分子為整數)的和的形式.解:由分母為﹣x2+1,可設﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b則﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b=﹣x4﹣ax2+x2+a+b=﹣x4﹣(a﹣1)x2+(a+b)∵對應任意x,上述等式均成立,∴,∴a=2,b=1∴==+=x2+2+這樣,分式被拆分成了一個整式x2+2與一個分式的和.解答:將分式拆分成一個整式與一個分式(分子為整數)的和的形式.試說明的最小值為1.19.(8分)鄂州市化工材料經銷公司購進一種化工原料若干千克,價格為每千克30元.物價部門規(guī)定其銷售單價不高于每千克60元,不低于每千克30元.經市場調查發(fā)現:日銷售量y(千克)是銷售單價x(元)的一次函數,且當x=60時,y=80;x=50時,y=1.在銷售過程中,每天還要支付其他費用450元.求出y與x的函數關系式,并寫出自變量x的取值范圍.求該公司銷售該原料日獲利w(元)與銷售單價x(元)之間的函數關系式.當銷售單價為多少元時,該公司日獲利最大?最大獲利是多少元?20.(8分)為實施“農村留守兒童關愛計劃”,某校結全校各班留守兒童的人數情況進行了統(tǒng)計,發(fā)現各班留守兒童人數只有1名、2名、3名、4名、5名、6名共六種情況,并制成如下兩幅不完整的統(tǒng)計圖:求該校平均每班有多少名留守兒童?并將該條形統(tǒng)計圖補充完整;某愛心人士決定從只有2名留守兒童的這些班級中,任選兩名進行生活資助,請用列表法或畫樹狀圖的方法,求出所選兩名留守兒童來自同一個班級的概率.21.(8分)如圖1在正方形ABCD的外側作兩個等邊三角形ADE和DCF,連接AF,BE.請判斷:AF與BE的數量關系是,位置關系;如圖2,若將條件“兩個等邊三角形ADE和DCF”變?yōu)椤皟蓚€等腰三角形ADE和DCF,且EA=ED=FD=FC”,第(1)問中的結論是否仍然成立?請作出判斷并給予證明;若三角形ADE和DCF為一般三角形,且AE=DF,ED=FC,第(1)問中的結論都能成立嗎?請直接寫出你的判斷.22.(10分)化簡求值:,其中.23.(12分)如圖所示,點B、F、C、E在同一直線上,AB⊥BE,DE⊥BE,連接AC、DF,且AC=DF,BF=CE,求證:AB=DE.24.如圖,已知一次函數y1=kx+b(k≠0)的圖象與反比例函數y2=-8x的圖象交于A、B兩點,與坐標軸交于M、N兩點.且點A的橫坐標和點B的縱坐標都是﹣1.求一次函數的解析式;求△AOB的面積;觀察圖象,直接寫出y
參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】
根據反比例函數圖象的性質對各選項分析判斷后利用排除法求解.【詳解】A.k=?2<0,∴它的圖象在第二、四象限,故本選項正確;B.k=?2<0,當x>0時,y隨x的增大而增大,故本選項正確;C.∵-2D.若點A(x1,y1),B(x2,y2)都在圖象上,,若x1<0<x2,則y2<y1,故本選項錯誤.故選:D.【點睛】考查了反比例函數的圖象與性質,掌握反比例函數的性質是解題的關鍵.2、B【解析】
圓內接正六邊形的邊長是1,即圓的半徑是1,則圓的內接正方形的對角線長是2,進而就可求解.【詳解】解:∵圓內接正六邊形的邊長是1,∴圓的半徑為1.那么直徑為2.圓的內接正方形的對角線長為圓的直徑,等于2.∴圓的內接正方形的邊長是1.故選B.【點睛】本題考查正多邊形與圓,關鍵是利用知識點:圓內接正六邊形的邊長和圓的半徑相等;圓的內接正方形的對角線長為圓的直徑解答.3、B【解析】∵ABCD是菱形,∠BCD=120°,∴∠B=60°,BA=BC.∴△ABC是等邊三角形.∴△ABC的周長=3AB=1.故選B4、C【解析】
根據向下平移,縱坐標相減,即可得到答案.【詳解】∵拋物線y=x2+2向下平移1個單位,∴拋物線的解析式為y=x2+2-1,即y=x2+1.故選C.5、D【解析】
直接利用提取公因式法以及冪的乘方運算法則將原式變形進而得出答案.【詳解】解:∵55+55+55+55+55=25n,∴55×5=52n,則56=52n,解得:n=1.故選D.【點睛】此題主要考查了冪的乘方運算,正確將原式變形是解題關鍵.6、B【解析】∵關于x的不等式ax<b的解為x>-2,∴a<0,且,即,∴(1)解不等式ax+2<-b+2可得:ax<-b,,即x>2;(2)解不等式–ax-1<b-1可得:-ax<b,,即x<2;(3)解不等式ax>b可得:,即x<-2;(4)解不等式可得:,即;∴解集為x<2的是B選項中的不等式.故選B.7、C【解析】
作輔助線,構建全等三角形:過D作GH⊥x軸,過A作AG⊥GH,過B作BM⊥HC于M,證明△AGD≌△DHC≌△CMB,根據點D的坐標表示:AG=DH=-x-1,由DG=BM,列方程可得x的值,表示D和E的坐標,根據三角形面積公式可得結論.【詳解】解:過D作GH⊥x軸,過A作AG⊥GH,過B作BM⊥HC于M,設D(x,),∵四邊形ABCD是正方形,∴AD=CD=BC,∠ADC=∠DCB=90°,易得△AGD≌△DHC≌△CMB(AAS),∴AG=DH=﹣x﹣1,∴DG=BM,∵GQ=1,DQ=﹣,DH=AG=﹣x﹣1,由QG+DQ=BM=DQ+DH得:1﹣=﹣1﹣x﹣,解得x=﹣2,∴D(﹣2,﹣3),CH=DG=BM=1﹣=4,∵AG=DH=﹣1﹣x=1,∴點E的縱坐標為﹣4,當y=﹣4時,x=﹣,∴E(﹣,﹣4),∴EH=2﹣=,∴CE=CH﹣HE=4﹣=,∴S△CEB=CE?BM=××4=7;故選C.【點睛】考查正方形的性質、全等三角形的判定和性質、反比例函數的性質等知識,解題的關鍵是靈活運用所學知識解決問題,學會構建方程解決問題.8、D【解析】分析:先根據圓內接四邊形的性質得到然后根據圓周角定理求詳解:∵∴∴故選D.點睛:考查圓內接四邊形的性質,圓周角定理,掌握圓內接四邊形的對角互補是解題的關鍵.9、B【解析】
方程兩邊同時乘以(x-2),轉化為整式方程,由此即可作出判斷.【詳解】方程兩邊同時乘以(x-2),得1﹣3(x﹣2)=﹣4,故選B.【點睛】本題考查了解分式方程,利用了轉化的思想,熟練掌握解分式方程的一般步驟以及注意事項是解題的關鍵.10、A【解析】
直接根據圓周角定理即可得出結論.【詳解】∵A、B、C是⊙O上的三點,∠B=75°,∴∠AOC=2∠B=150°.故選A.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】【分析】根據題意可得出陰影部分的面積等于扇形ABA′的面積加上半圓面積再減去半圓面積.【詳解】∵S陰影=S扇形ABA′+S半圓-S半圓=S扇形ABA′==,故答案為.【點睛】本題考查了扇形面積的計算以及旋轉的性質,熟記扇形面積公式且能準確識圖是解題的關鍵.12、【解析】
設“復興號”的速度為x千米/時,則原來列車的速度為(x-50)千米/時,根據提速后從北京到上海運行時間縮短了30分鐘列出方程即可.【詳解】設“復興號”的速度為x千米/時,則原來列車的速度為(x-50)千米/時,根據題意得.故答案為.【點睛】本題主要考查由實際問題抽象出分式方程,解題的關鍵是理解題意,找到題目蘊含的相等關系.13、【解析】分析:要將一個多項式分解因式的一般步驟是首先看各項有沒有公因式,若有公因式,則把它提取出來,之后再觀察是否是完全平方公式或平方差公式,若是就考慮用公式法繼續(xù)分解因式.因此,先提取公因式后繼續(xù)應用平方差公式分解即可:.14、【解析】
根據三角形的面積公式求出=,根據等腰三角形的性質得到BD=DC=BC,根據勾股定理列式計算即可.【詳解】∵AD是BC邊上的高,CE是AB邊上的高,∴AB?CE=BC?AD,∵AD=6,CE=8,∴=,∴=,∵AB=AC,AD⊥BC,∴BD=DC=BC,∵AB2?BD2=AD2,∴AB2=BC2+36,即BC2=BC2+36,解得:BC=.故答案為:.【點睛】本題考查的是等腰三角形的性質、勾股定理的應用和三角形面積公式的應用,根據三角形的面積公式求出腰與底的比是解題的關15、60π【解析】
圓錐的側面積=π×底面半徑×母線長,把相應數值代入即可求解.解:圓錐的側面積=π×6×10=60πcm1.16、【解析】
根據正弦和余弦的概念求解.【詳解】解:∵P是∠α的邊OA上一點,且P點坐標為(3,4),∴PB=4,OB=3,OP==5,故sinα==,cosα=,∴sinα+cosα=,故答案為【點睛】此題考查的是銳角三角函數的定義,解答此類題目的關鍵是找出所求角的對應邊.三、解答題(共8題,共72分)17、4﹣【解析】
原式利用絕對值的代數意義,特殊角的三角函數值,負整數指數冪的法則計算即可.【詳解】原式=2×﹣(﹣1)+2=1﹣+1+2=4﹣.【點睛】本題考查了實數的運算,熟練掌握運算法則是解本題的關鍵.18、(1)=x2+7+(2)見解析【解析】
(1)根據閱讀材料中的方法將分式拆分成一個整式與一個分式(分子為整數)的和的形式即可;(2)原式分子變形后,利用不等式的性質求出最小值即可.【詳解】(1)設﹣x4﹣6x+1=(﹣x2+1)(x2+a)+b=﹣x4+(1﹣a)x2+a+b,可得,解得:a=7,b=1,則原式=x2+7+;(2)由(1)可知,=x2+7+.∵x2≥0,∴x2+7≥7;當x=0時,取得最小值0,∴當x=0時,x2+7+最小值為1,即原式的最小值為1.19、(1)y=-2x+200(30≤x≤60)(2)w=-2(x-65)2+2000);(3)當銷售單價為60元時,該公司日獲利最大,為1950元【解析】
(1)設出一次函數解析式,把相應數值代入即可.(2)根據利潤計算公式列式即可;(3)進行配方求值即可.【詳解】(1)設y=kx+b,根據題意得解得:∴y=-2x+200(30≤x≤60)(2)W=(x-30)(-2x+200)-450=-2x2+260x-6450=-2(x-65)2+2000)(3)W=-2(x-65)2+2000∵30≤x≤60∴x=60時,w有最大值為1950元∴當銷售單價為60元時,該公司日獲利最大,為1950元考點:二次函數的應用.20、解:(1)該校班級個數為4÷20%=20(個),只有2名留守兒童的班級個數為:20﹣(2+3+4+5+4)=2(個),該校平均每班留守兒童的人數為:=4(名),補圖如下:(2)由(1)得只有2名留守兒童的班級有2個,共4名學生.設A1,A2來自一個班,B1,B2來自一個班,有樹狀圖可知,共有12中等可能的情況,其中來自一個班的共有4種情況,則所選兩名留守兒童來自同一個班級的概率為:=.【解析】(1)首先求出班級數,然后根據條形統(tǒng)計圖求出只有2名留守兒童的班級數,再求出總的留守兒童數,最后求出每班平均留守兒童數;(2)利用樹狀圖確定可能種數和來自同一班的種數,然后就能算出來自同一個班級的概率.21、(1)AF=BE,AF⊥BE;(2)證明見解析;(3)結論仍然成立【解析】試題分析:(1)根據正方形和等邊三角形可證明△ABE≌△DAF,然后可得BE=AF,∠ABE=∠DAF,進而通過直角可證得BE⊥AF;(2)類似(1)的證法,證明△ABE≌△DAF,然后可得AF=BE,AF⊥BE,因此結論還成立;(3)類似(1)(2)證法,先證△AED≌△DFC,然后再證△ABE≌△DAF,因此可得證結論.試題解析:解:(1)AF=BE,AF⊥BE.(2)結論成立.證明:∵四邊形ABCD是正方形,∴BA="AD"=DC,∠BAD=∠ADC=90°.在△EAD和△FDC中,∴△EAD≌△FDC.∴∠EAD=∠FDC.∴∠EAD+∠DAB=∠FDC+∠CDA,即∠BAE=∠ADF.在△BAE和△ADF中,∴△BAE≌△ADF.∴BE=AF,∠ABE=∠DAF.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度曹瑞與張麗離婚協(xié)議中子女撫養(yǎng)及生活費用協(xié)議3篇
- 2025年度家禽飼料原料采購與家禽買賣合同書3篇
- 2024版鐵塔公司基站用地租賃協(xié)議樣本一
- 2025年度醫(yī)療器械展承辦合同4篇
- 2024庭院立體綠化設計與施工合同3篇
- 2025年PVC消防管道設備采購銷售專項合同3篇
- 2025年金麗麻布項目投資可行性研究分析報告
- 教案資源:小熊的彩虹滑梯課件公開課教學設計資料
- 2025年安徽通 用生物系統(tǒng)有限公司招聘筆試參考題庫含答案解析
- 2025年度個人公司資產剝離合同范本:評估與定價策略4篇
- HG∕T 2058.1-2016 搪玻璃溫度計套
- 九宮數獨200題(附答案全)
- 泌尿科一科一品匯報課件
- 人員密集場所消防安全管理培訓
- 白銅錫電鍍工藝
- 拜耳法氧化鋁生產工藝
- 2024年南京信息職業(yè)技術學院高職單招(英語/數學/語文)筆試歷年參考題庫含答案解析
- 部編版二年級下冊道德與法治第二單元《我們好好玩》全部教案
- 幼兒園利劍護蕾專項行動工作方案總結與展望
- 合同信息管理方案模板范文
- 2024年大唐云南發(fā)電有限公司招聘筆試參考題庫含答案解析
評論
0/150
提交評論