版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
湖南省衡陽縣清潭中學(xué)2025屆高三第三次模擬考試數(shù)學(xué)試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知某口袋中有3個白球和個黑球(),現(xiàn)從中隨機(jī)取出一球,再換回一個不同顏色的球(即若取出的是白球,則放回一個黑球;若取出的是黑球,則放回一個白球),記換好球后袋中白球的個數(shù)是.若,則=()A. B.1 C. D.22.某網(wǎng)店2019年全年的月收支數(shù)據(jù)如圖所示,則針對2019年這一年的收支情況,下列說法中錯誤的是()A.月收入的極差為60 B.7月份的利潤最大C.這12個月利潤的中位數(shù)與眾數(shù)均為30 D.這一年的總利潤超過400萬元3.雙曲線x2a2A.y=±2x B.y=±3x4.已知分別為雙曲線的左、右焦點(diǎn),點(diǎn)是其一條漸近線上一點(diǎn),且以為直徑的圓經(jīng)過點(diǎn),若的面積為,則雙曲線的離心率為()A. B. C. D.5.設(shè)等比數(shù)列的前項(xiàng)和為,則“”是“”的()A.充分不必要 B.必要不充分C.充要 D.既不充分也不必要6.國務(wù)院發(fā)布《關(guān)于進(jìn)一步調(diào)整優(yōu)化結(jié)構(gòu)、提高教育經(jīng)費(fèi)使用效益的意見》中提出,要優(yōu)先落實(shí)教育投入.某研究機(jī)構(gòu)統(tǒng)計(jì)了年至年國家財(cái)政性教育經(jīng)費(fèi)投入情況及其在中的占比數(shù)據(jù),并將其繪制成下表,由下表可知下列敘述錯誤的是()A.隨著文化教育重視程度的不斷提高,國在財(cái)政性教育經(jīng)費(fèi)的支出持續(xù)增長B.年以來,國家財(cái)政性教育經(jīng)費(fèi)的支出占比例持續(xù)年保持在以上C.從年至年,中國的總值最少增加萬億D.從年到年,國家財(cái)政性教育經(jīng)費(fèi)的支出增長最多的年份是年7.現(xiàn)有甲、乙、丙、丁4名學(xué)生平均分成兩個志愿者小組到校外參加兩項(xiàng)活動,則乙、丙兩人恰好參加同一項(xiàng)活動的概率為A. B. C. D.8.平行四邊形中,已知,,點(diǎn)、分別滿足,,且,則向量在上的投影為()A.2 B. C. D.9.已知雙曲線的焦距是虛軸長的2倍,則雙曲線的漸近線方程為()A. B. C. D.10.已知直線:()與拋物線:交于(坐標(biāo)原點(diǎn)),兩點(diǎn),直線:與拋物線交于,兩點(diǎn).若,則實(shí)數(shù)的值為()A. B. C. D.11.若函數(shù)在時取得極值,則()A. B. C. D.12.某幾何體的三視圖如圖所示,其俯視圖是由一個半圓與其直徑組成的圖形,則此幾何體的體積是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知單位向量的夾角為,則=_________.14.邊長為2的菱形中,與交于點(diǎn)O,E是線段的中點(diǎn),的延長線與相交于點(diǎn)F,若,則______.15.曲線f(x)=(x2+x)lnx在點(diǎn)(1,f(1))處的切線方程為____.16.過拋物線C:()的焦點(diǎn)F且傾斜角為銳角的直線l與C交于A,B兩點(diǎn),過線段的中點(diǎn)N且垂直于l的直線與C的準(zhǔn)線交于點(diǎn)M,若,則l的斜率為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)(1)若,求證:(2)若,恒有,求實(shí)數(shù)的取值范圍.18.(12分)設(shè)點(diǎn)分別是橢圓的左,右焦點(diǎn),為橢圓上任意一點(diǎn),且的最小值為1.(1)求橢圓的方程;(2)如圖,直線與軸交于點(diǎn),過點(diǎn)且斜率的直線與橢圓交于兩點(diǎn),為線段的中點(diǎn),直線交直線于點(diǎn),證明:直線.19.(12分)如圖,在四棱錐中,,,.(1)證明:平面;(2)若,,為線段上一點(diǎn),且,求直線與平面所成角的正弦值.20.(12分)在直角坐標(biāo)系xOy中,直線的參數(shù)方程為(t為參數(shù),).以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為.(l)求直線的普通方程和曲線C的直角坐標(biāo)方程:(2)若直線與曲線C相交于A,B兩點(diǎn),且.求直線的方程.21.(12分)已知點(diǎn)到拋物線C:y1=1px準(zhǔn)線的距離為1.(Ⅰ)求C的方程及焦點(diǎn)F的坐標(biāo);(Ⅱ)設(shè)點(diǎn)P關(guān)于原點(diǎn)O的對稱點(diǎn)為點(diǎn)Q,過點(diǎn)Q作不經(jīng)過點(diǎn)O的直線與C交于兩點(diǎn)A,B,直線PA,PB,分別交x軸于M,N兩點(diǎn),求的值.22.(10分)如圖,在平面四邊形中,,,.(1)求;(2)求四邊形面積的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】由題意或4,則,故選B.2、D【解析】
直接根據(jù)折線圖依次判斷每個選項(xiàng)得到答案.【詳解】由圖可知月收入的極差為,故選項(xiàng)A正確;1至12月份的利潤分別為20,30,20,10,30,30,60,40,30,30,50,30,7月份的利潤最高,故選項(xiàng)B正確;易求得總利潤為380萬元,眾數(shù)為30,中位數(shù)為30,故選項(xiàng)C正確,選項(xiàng)D錯誤.故選:.【點(diǎn)睛】本題考查了折線圖,意在考查學(xué)生的理解能力和應(yīng)用能力.3、A【解析】分析:根據(jù)離心率得a,c關(guān)系,進(jìn)而得a,b關(guān)系,再根據(jù)雙曲線方程求漸近線方程,得結(jié)果.詳解:∵e=因?yàn)闈u近線方程為y=±bax點(diǎn)睛:已知雙曲線方程x2a24、B【解析】
根據(jù)題意,設(shè)點(diǎn)在第一象限,求出此坐標(biāo),再利用三角形的面積即可得到結(jié)論.【詳解】由題意,設(shè)點(diǎn)在第一象限,雙曲線的一條漸近線方程為,所以,,又以為直徑的圓經(jīng)過點(diǎn),則,即,解得,,所以,,即,即,所以,雙曲線的離心率為.故選:B.【點(diǎn)睛】本題主要考查雙曲線的離心率,解決本題的關(guān)鍵在于求出與的關(guān)系,屬于基礎(chǔ)題.5、A【解析】
首先根據(jù)等比數(shù)列分別求出滿足,的基本量,根據(jù)基本量的范圍即可確定答案.【詳解】為等比數(shù)列,若成立,有,因?yàn)楹愠闪?,故可以推出且,若成立,?dāng)時,有,當(dāng)時,有,因?yàn)楹愠闪ⅲ杂?,故可以推出,,所以“”是“”的充分不必要條件.故選:A.【點(diǎn)睛】本題主要考查了等比數(shù)列基本量的求解,充分必要條件的集合關(guān)系,屬于基礎(chǔ)題.6、C【解析】
觀察圖表,判斷四個選項(xiàng)是否正確.【詳解】由表易知、、項(xiàng)均正確,年中國為萬億元,年中國為萬億元,則從年至年,中國的總值大約增加萬億,故C項(xiàng)錯誤.【點(diǎn)睛】本題考查統(tǒng)計(jì)圖表,正確認(rèn)識圖表是解題基礎(chǔ).7、B【解析】
求得基本事件的總數(shù)為,其中乙丙兩人恰好參加同一項(xiàng)活動的基本事件個數(shù)為,利用古典概型及其概率的計(jì)算公式,即可求解.【詳解】由題意,現(xiàn)有甲乙丙丁4名學(xué)生平均分成兩個志愿者小組到校外參加兩項(xiàng)活動,基本事件的總數(shù)為,其中乙丙兩人恰好參加同一項(xiàng)活動的基本事件個數(shù)為,所以乙丙兩人恰好參加同一項(xiàng)活動的概率為,故選B.【點(diǎn)睛】本題主要考查了排列組合的應(yīng)用,以及古典概型及其概率的計(jì)算問題,其中解答中合理應(yīng)用排列、組合的知識求得基本事件的總數(shù)和所求事件所包含的基本事件的個數(shù),利用古典概型及其概率的計(jì)算公式求解是解答的關(guān)鍵,著重考查了運(yùn)算與求解能力,屬于基礎(chǔ)題.8、C【解析】
將用向量和表示,代入可求出,再利用投影公式可得答案.【詳解】解:,得,則向量在上的投影為.故選:C.【點(diǎn)睛】本題考查向量的幾何意義,考查向量的線性運(yùn)算,將用向量和表示是關(guān)鍵,是基礎(chǔ)題.9、A【解析】
根據(jù)雙曲線的焦距是虛軸長的2倍,可得出,結(jié)合,得出,即可求出雙曲線的漸近線方程.【詳解】解:由雙曲線可知,焦點(diǎn)在軸上,則雙曲線的漸近線方程為:,由于焦距是虛軸長的2倍,可得:,∴,即:,,所以雙曲線的漸近線方程為:.故選:A.【點(diǎn)睛】本題考查雙曲線的簡單幾何性質(zhì),以及雙曲線的漸近線方程.10、D【解析】
設(shè),,聯(lián)立直線與拋物線方程,消去、列出韋達(dá)定理,再由直線與拋物線的交點(diǎn)求出點(diǎn)坐標(biāo),最后根據(jù),得到方程,即可求出參數(shù)的值;【詳解】解:設(shè),,由,得,∵,解得或,∴,.又由,得,∴或,∴,∵,∴,又∵,∴代入解得.故選:D【點(diǎn)睛】本題考查直線與拋物線的綜合應(yīng)用,弦長公式的應(yīng)用,屬于中檔題.11、D【解析】
對函數(shù)求導(dǎo),根據(jù)函數(shù)在時取得極值,得到,即可求出結(jié)果.【詳解】因?yàn)?,所以,又函?shù)在時取得極值,所以,解得.故選D【點(diǎn)睛】本題主要考查導(dǎo)數(shù)的應(yīng)用,根據(jù)函數(shù)的極值求參數(shù)的問題,屬于??碱}型.12、C【解析】由三視圖可知,該幾何體是下部是半徑為2,高為1的圓柱的一半,上部為底面半徑為2,高為2的圓錐的一半,所以,半圓柱的體積為,上部半圓錐的體積為,所以該幾何體的體積為,故應(yīng)選.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
因?yàn)閱挝幌蛄康膴A角為,所以,所以==.14、【解析】
取基向量,,然后根據(jù)三點(diǎn)共線以及向量加減法運(yùn)算法則將,表示為基向量后再相乘可得.【詳解】如圖:設(shè),又,且存在實(shí)數(shù)使得,,,,,,故答案為:.【點(diǎn)睛】本題考查了平面向量數(shù)量積的性質(zhì)及其運(yùn)算,屬中檔題.15、【解析】
求函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)的幾何意義即可求出切線方程.【詳解】解:∵,
∴,
則,
又,即切點(diǎn)坐標(biāo)為(1,0),
則函數(shù)在點(diǎn)(1,f(1))處的切線方程為,
即,
故答案為:.【點(diǎn)睛】本題主要考查導(dǎo)數(shù)的幾何意義,根據(jù)導(dǎo)數(shù)和切線斜率之間的關(guān)系是解決本題的關(guān)鍵.16、【解析】
分別過A,B,N作拋物線的準(zhǔn)線的垂線,垂足分別為,,,根據(jù)拋物線定義和求得,從而求得直線l的傾斜角.【詳解】分別過A,B,N作拋物線的準(zhǔn)線的垂線,垂足分別為,,,由拋物線的定義知,,,因?yàn)椋?,所以,即直線的傾斜角為,又直線與直線l垂直且直線l的傾斜角為銳角,所以直線l的傾斜角為,.故答案為:【點(diǎn)睛】此題考查拋物線的定義,根據(jù)已知條件做出輔助線利用拋物線定義和幾何關(guān)系即可求解,屬于較易題目.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)(﹣∞,0]【解析】
(1)利用導(dǎo)數(shù)求x<0時,f(x)的極大值為,即證(2)等價于k≤,x>0,令g(x)=,x>0,再求函數(shù)g(x)的最小值得解.【詳解】(1)∵函數(shù)f(x)=x2e3x,∴f′(x)=2xe3x+3x2e3x=x(3x+2)e3x.由f′(x)>0,得x<﹣或x>0;由f′(x)<0,得,∴f(x)在(﹣∞,﹣)內(nèi)遞增,在(﹣,0)內(nèi)遞減,在(0,+∞)內(nèi)遞增,∴f(x)的極大值為,∴當(dāng)x<0時,f(x)≤(2)∵x2e3x≥(k+3)x+2lnx+1,∴k≤,x>0,令g(x)=,x>0,則g′(x),令h(x)=x2(1+3x)e3x+2lnx﹣1,則h(x)在(0,+∞)上單調(diào)遞增,且x→0+時,h(x)→﹣∞,h(1)=4e3﹣1>0,∴存在x0∈(0,1),使得h(x0)=0,∴當(dāng)x∈(0,x0)時,g′(x)<0,g(x)單調(diào)遞減,當(dāng)x∈(x0,+∞)時,g′(x)>0,g(x)單調(diào)遞增,∴g(x)在(0,+∞)上的最小值是g(x0)=,∵h(yuǎn)(x0)=+2lnx0﹣1=0,所以,令,令所以=1,,∴g(x0)∴實(shí)數(shù)k的取值范圍是(﹣∞,0].【點(diǎn)睛】本題主要考查利用證明不等式,考查利用導(dǎo)數(shù)求最值和解答不等式的恒成立問題,意在考查學(xué)生對這些知識的理解掌握水平和分析推理能力.18、(1)(2)見解析【解析】
(1)設(shè),求出后由二次函數(shù)知識得最小值,從而得,即得橢圓方程;(2)設(shè)直線的方程為,代入橢圓方程整理,設(shè),由韋達(dá)定理得,設(shè),利用三點(diǎn)共線,求得,然后驗(yàn)證即可.【詳解】解:(1)設(shè),則,所以,因?yàn)椋援?dāng)時,值最小,所以,解得,(舍負(fù))所以,所以橢圓的方程為,(2)設(shè)直線的方程為,聯(lián)立,得.設(shè),則,設(shè),因?yàn)槿c(diǎn)共線,又所以,解得.而所以直線軸,即.【點(diǎn)睛】本題考查求橢圓方程,考查直線與橢圓相交問題.直線與橢圓相交問題,采取設(shè)而不求思想,設(shè),設(shè)直線方程,應(yīng)用韋達(dá)定理,得出,再代入題中需要計(jì)算可證明的式子參與化簡變形.19、(1)證明見解析(2)【解析】
(1)利用線段長度得到與間的垂直關(guān)系,再根據(jù)線面垂直的判定定理完成證明;(2)以、、為軸、軸、軸建立空間直角坐標(biāo)系,利用直線的方向向量與平面的法向量夾角的余弦值的絕對值等于線面角的正弦值,計(jì)算出結(jié)果.【詳解】(1)∵,,∴,∴,∵,平面,∴平面(2)由(1)知,,又為坐標(biāo)原點(diǎn),分別以、、為軸、軸、軸建立空間直角坐標(biāo)系,則,,,,,,,∵,∴,設(shè)是平面的一個法向量則,即,取得∴∴直線與平面所成的正弦值為【點(diǎn)睛】本題考查線面垂直的證明以及用向量法求解線面角的正弦,難度一般.用向量方法求解線面角的正弦值時,注意直線方向向量與平面法向量夾角的余弦值的絕對值等于線面角的正弦值.20、(1)見解析(2)【解析】
(1)將消去參數(shù)t可得直線的普通方程,利用x=ρcosθ,可將極坐標(biāo)方程轉(zhuǎn)為直角坐標(biāo)方程.(2)利用直線被圓截得的弦長公式計(jì)算可得答案.【詳解】(1)由消去參數(shù)t得(),由得曲線C的直角坐標(biāo)方程為:(2)由得,圓心為(1,0),半徑為2,圓心到直線的距離為,∴,即,整理得,∵,∴,,,所以直線l的方程為:.【點(diǎn)睛】本題考查參數(shù)方程,極坐標(biāo)方程與直角坐標(biāo)方程之間的互化,考查直線被圓截得的弦長公式的應(yīng)用,考查分析能力與計(jì)算能力,屬于基礎(chǔ)題.21、(Ⅰ)C的方程為,焦點(diǎn)F的坐標(biāo)為(1,0);(Ⅱ)1【解析】
(Ⅰ)根據(jù)拋物線定義求出p,即可求C的方程及焦點(diǎn)F的坐標(biāo);
(Ⅱ)設(shè)點(diǎn)A(x1,y1),B(x
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 職業(yè)學(xué)院復(fù)查成績申請單
- 福建省南平市衛(wèi)閩中學(xué)2022年高三英語模擬試題含解析
- 福建省南平市太平鎮(zhèn)中學(xué)2022年高二物理模擬試卷含解析
- 12 古詩三首-示兒說課稿-2024-2025學(xué)年五年級上冊語文統(tǒng)編版
- 精2024年度企業(yè)咨詢服務(wù)合同
- 2024年股權(quán)轉(zhuǎn)讓與資產(chǎn)購置合同3篇
- 11植物的花 說課稿-2024-2025學(xué)年科學(xué)三年級下冊青島版
- 6 讓資源再生 說課稿-2023-2024學(xué)年科學(xué)五年級下冊教科版
- 秋分營銷策略解析
- 10《古詩三首》第三課時 說課稿-2024-2025學(xué)年語文六年級下冊統(tǒng)編版
- YC 264-2014煙用內(nèi)襯紙
- GB/T 706-2008熱軋型鋼
- GB/T 28809-2012軌道交通通信、信號和處理系統(tǒng)信號用安全相關(guān)電子系統(tǒng)
- GB/T 18287-2013移動電話用鋰離子蓄電池及蓄電池組總規(guī)范
- 小學(xué)教育階段創(chuàng)新思維培養(yǎng)的意義
- GA/T 1476-2018法庭科學(xué)遠(yuǎn)程主機(jī)數(shù)據(jù)獲取技術(shù)規(guī)范
- 化工工藝純堿工藝課件
- 離職申請離職申請表范文
- 干法熄焦工技師理論考試題庫(含答案)
- IWE(國際焊接工程師)考試試題生產(chǎn)模塊
- 澳洲淡水龍蝦養(yǎng)殖標(biāo)準(zhǔn)手冊
評論
0/150
提交評論