版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
四川省天府名校2025屆高三下學期聯考數學試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.中國古建筑借助榫卯將木構件連接起來,構件的凸出部分叫榫頭,凹進部分叫卯眼,圖中木構件右邊的小長方體是榫頭.若如圖擺放的木構件與某一帶卯眼的木構件咬合成長方體,則咬合時帶卯眼的木構件的俯視圖可以是A. B. C. D.2.下列函數中,既是偶函數又在區(qū)間上單調遞增的是()A. B. C. D.3.已知向量,,則向量在向量上的投影是()A. B. C. D.4.已知,則“直線與直線垂直”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件5.已知與之間的一組數據:12343.24.87.5若關于的線性回歸方程為,則的值為()A.1.5 B.2.5 C.3.5 D.4.56.“”是“,”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分又不必要條件7.下圖是我國第24~30屆奧運獎牌數的回眸和中國代表團獎牌總數統(tǒng)計圖,根據表和統(tǒng)計圖,以下描述正確的是().金牌(塊)銀牌(塊)銅牌(塊)獎牌總數2451112282516221254261622125027281615592832171463295121281003038272388A.中國代表團的奧運獎牌總數一直保持上升趨勢B.折線統(tǒng)計圖中的六條線段只是為了便于觀察圖象所反映的變化,不具有實際意義C.第30屆與第29屆北京奧運會相比,奧運金牌數、銀牌數、銅牌數都有所下降D.統(tǒng)計圖中前六屆奧運會中國代表團的奧運獎牌總數的中位數是54.58.復數,若復數在復平面內對應的點關于虛軸對稱,則等于()A. B. C. D.9.復數滿足為虛數單位),則的虛部為()A. B. C. D.10.已知非零向量滿足,,且與的夾角為,則()A.6 B. C. D.311.若,則下列關系式正確的個數是()①②③④A.1 B.2 C.3 D.412.若點(2,k)到直線5x-12y+6=0的距離是4,則k的值是()A.1 B.-3 C.1或 D.-3或二、填空題:本題共4小題,每小題5分,共20分。13.在中,,.若,則_________.14.已知等邊三角形的邊長為1.,點、分別為線段、上的動點,則取值的集合為__________.15.已知函數若關于的不等式的解集為,則實數的所有可能值之和為_______.16.若一組樣本數據7,9,,8,10的平均數為9,則該組樣本數據的方差為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知點,直線與拋物線交于不同兩點、,直線、與拋物線的另一交點分別為兩點、,連接,點關于直線的對稱點為點,連接、.(1)證明:;(2)若的面積,求的取值范圍.18.(12分)函數(1)證明:;(2)若存在,且,使得成立,求取值范圍.19.(12分)高鐵和航空的飛速發(fā)展不僅方便了人們的出行,更帶動了我國經濟的巨大發(fā)展.據統(tǒng)計,在2018年這一年內從市到市乘坐高鐵或飛機出行的成年人約為萬人次.為了解乘客出行的滿意度,現從中隨機抽取人次作為樣本,得到下表(單位:人次):滿意度老年人中年人青年人乘坐高鐵乘坐飛機乘坐高鐵乘坐飛機乘坐高鐵乘坐飛機10分(滿意)1212022015分(一般)2362490分(不滿意)106344(1)在樣本中任取個,求這個出行人恰好不是青年人的概率;(2)在2018年從市到市乘坐高鐵的所有成年人中,隨機選取人次,記其中老年人出行的人次為.以頻率作為概率,求的分布列和數學期望;(3)如果甲將要從市出發(fā)到市,那么根據表格中的數據,你建議甲是乘坐高鐵還是飛機?并說明理由.20.(12分)已知滿足,且,求的值及的面積.(從①,②,③這三個條件中選一個,補充到上面問題中,并完成解答.)21.(12分)在中,角的對邊分別為,若.(1)求角的大?。唬?)若,為外一點,,求四邊形面積的最大值.22.(10分)在中,內角的對邊分別是,滿足條件.(1)求角;(2)若邊上的高為,求的長.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
詳解:由題意知,題干中所給的是榫頭,是凸出的幾何體,求得是卯眼的俯視圖,卯眼是凹進去的,即俯視圖中應有一不可見的長方形,且俯視圖應為對稱圖形故俯視圖為故選A.點睛:本題主要考查空間幾何體的三視圖,考查學生的空間想象能力,屬于基礎題。2、C【解析】
結合基本初等函數的奇偶性及單調性,結合各選項進行判斷即可.【詳解】A:為非奇非偶函數,不符合題意;B:在上不單調,不符合題意;C:為偶函數,且在上單調遞增,符合題意;D:為非奇非偶函數,不符合題意.故選:C.【點睛】本小題主要考查函數的單調性和奇偶性,屬于基礎題.3、A【解析】
先利用向量坐標運算求解,再利用向量在向量上的投影公式即得解【詳解】由于向量,故向量在向量上的投影是.故選:A【點睛】本題考查了向量加法、減法的坐標運算和向量投影的概念,考查了學生概念理解,數學運算的能力,屬于中檔題.4、B【解析】
由兩直線垂直求得則或,再根據充要條件的判定方法,即可求解.【詳解】由題意,“直線與直線垂直”則,解得或,所以“直線與直線垂直”是“”的必要不充分條件,故選B.【點睛】本題主要考查了兩直線的位置關系,及必要不充分條件的判定,其中解答中利用兩直線的位置關系求得的值,同時熟記充要條件的判定方法是解答的關鍵,著重考查了推理與論證能力,屬于基礎題.5、D【解析】
利用表格中的數據,可求解得到代入回歸方程,可得,再結合表格數據,即得解.【詳解】利用表格中數據,可得又,.解得故選:D【點睛】本題考查了線性回歸方程過樣本中心點的性質,考查了學生概念理解,數據處理,數學運算的能力,屬于基礎題.6、B【解析】
先求出滿足的值,然后根據充分必要條件的定義判斷.【詳解】由得,即,,因此“”是“,”的必要不充分條件.故選:B.【點睛】本題考查充分必要條件,掌握充分必要條件的定義是解題基礎.解題時可根據條件與結論中參數的取值范圍進行判斷.7、B【解析】
根據表格和折線統(tǒng)計圖逐一判斷即可.【詳解】A.中國代表團的奧運獎牌總數不是一直保持上升趨勢,29屆最多,錯誤;B.折線統(tǒng)計圖中的六條線段只是為了便于觀察圖象所反映的變化,不表示某種意思,正確;C.30屆與第29屆北京奧運會相比,奧運金牌數、銅牌數有所下降,銀牌數有所上升,錯誤;D.統(tǒng)計圖中前六屆奧運會中國代表團的奧運獎牌總數按照順序排列的中位數為,不正確;故選:B【點睛】此題考查統(tǒng)計圖,關鍵點讀懂折線圖,屬于簡單題目.8、A【解析】
先通過復數在復平面內對應的點關于虛軸對稱,得到,再利用復數的除法求解.【詳解】因為復數在復平面內對應的點關于虛軸對稱,且復數,所以所以故選:A【點睛】本題主要考查復數的基本運算和幾何意義,屬于基礎題.9、C【解析】
,分子分母同乘以分母的共軛復數即可.【詳解】由已知,,故的虛部為.故選:C.【點睛】本題考查復數的除法運算,考查學生的基本運算能力,是一道基礎題.10、D【解析】
利用向量的加法的平行四邊形法則,判斷四邊形的形狀,推出結果即可.【詳解】解:非零向量,滿足,可知兩個向量垂直,,且與的夾角為,說明以向量,為鄰邊,為對角線的平行四邊形是正方形,所以則.故選:.【點睛】本題考查向量的幾何意義,向量加法的平行四邊形法則的應用,考查分析問題解決問題的能力,屬于基礎題.11、D【解析】
a,b可看成是與和交點的橫坐標,畫出圖象,數形結合處理.【詳解】令,,作出圖象如圖,由,的圖象可知,,,②正確;,,有,①正確;,,有,③正確;,,有,④正確.故選:D.【點睛】本題考查利用函數圖象比較大小,考查學生數形結合的思想,是一道中檔題.12、D【解析】
由題得,解方程即得k的值.【詳解】由題得,解方程即得k=-3或.故答案為:D【點睛】(1)本題主要考查點到直線的距離公式,意在考查學生對該知識的掌握水平和計算推理能力.(2)點到直線的距離.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】分析:首先設出相應的直角邊長,利用余弦勾股定理得到相應的斜邊長,之后應用余弦定理得到直角邊長之間的關系,從而應用正切函數的定義,對邊比臨邊,求得對應角的正切值,即可得結果.詳解:根據題意,設,則,根據,得,由勾股定理可得,根據余弦定理可得,化簡整理得,即,解得,所以,故答案是.點睛:該題考查的是有關解三角形的問題,在解題的過程中,注意分析要求對應角的正切值,需要求誰,而題中所給的條件與對應的結果之間有什么樣的連線,設出直角邊長,利用所給的角的余弦值,利用余弦定理得到相應的等量關系,求得最后的結果.14、【解析】
根據題意建立平面直角坐標系,設三角形各點的坐標,依題意求出,,,的表達式,再進行數量積的運算,最后求和即可得出結果.【詳解】解:以的中點為坐標原點,所在直線為軸,線段的垂直平分線為軸建立平面直角坐標系,如圖所示,則,,,,則,,,設,,,即點的坐標為,則,,,所以故答案為:【點睛】本題考查平面向量的坐標表示和線性運算,以及平面向量基本定理和數量積的運算,是中檔題.15、【解析】
由分段函數可得不滿足題意;時,,可得,即有,解方程可得,4,結合指數函數的圖象和二次函數的圖象即可得到所求和.【詳解】解:由函數,可得的增區(qū)間為,,時,,,時,,當關于的不等式的解集為,,可得不成立,時,時,不成立;,即為,可得,即有,顯然,4成立;由和的圖象可得在僅有兩個交點.綜上可得的所有值的和為1.故答案為:1.【點睛】本題考查分段函數的圖象和性質,考查不等式的解法,注意運用分類討論思想方法,考查化簡運算能力,屬于中檔題.16、1【解析】
根據題意,由平均數公式可得,解得的值,進而由方差公式計算,可得答案.【詳解】根據題意,數據7,9,,8,10的平均數為9,則,解得:,則其方差.故答案為:1.【點睛】本題考平均數、方差的計算,考查運算求解能力,求解時注意求出的值,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2).【解析】
(1)設點、,求出直線、的方程,與拋物線的方程聯立,求出點、的坐標,利用直線、的斜率相等證明出;(2)設點到直線、的距離分別為、,求出,利用相似得出,可得出的邊上的高,并利用弦長公式計算出,即可得出關于的表達式,結合不等式可解出實數的取值范圍.【詳解】(1)設點、,則,直線的方程為:,由,消去并整理得,由韋達定理可知,,,代入直線的方程,得,解得,同理,可得,,,,代入得,因此,;(2)設點到直線、的距離分別為、,則,由(1)知,,,,,,同理,得,,由,整理得,由韋達定理得,,,得,設點到直線的高為,則,,,,解得,因此,實數的取值范圍是.【點睛】本題考查直線與直線平行的證明,考查實數的取值范圍的求法,考查拋物線、直線方程、韋達定理、弦長公式、直線的斜率等基礎知識,考查運算求解能力,考查數形結合思想,是難題.18、(1)證明見詳解;(2)或或【解析】
(1)(2)首先用基本不等式得到,然后解出不等式即可【詳解】(1)因為所以(2)當時所以當且僅當即時等號成立因為存在,且,使得成立所以所以或解得:或或【點睛】1.要熟練掌握絕對值的三角不等式,即2.應用基本不等式求最值時要滿足“一正二定三相等”.19、(1)(2)分布列見解析,數學期望(3)建議甲乘坐高鐵從市到市.見解析【解析】
(1)根據分層抽樣的特征可以得知,樣本中出行的老年人、中年人、青年人人次分別為,,,即可按照古典概型的概率計算公式計算得出;(2)依題意可知服從二項分布,先計算出隨機選取人次,此人為老年人概率是,所以,即,即可求出的分布列和數學期望;(3)可以計算滿意度均值來比較乘坐高鐵還是飛機.【詳解】(1)設事件:“在樣本中任取個,這個出行人恰好不是青年人”為,由表可得:樣本中出行的老年人、中年人、青年人人次分別為,,,所以在樣本中任取個,這個出行人恰好不是青年人的概率.(2)由題意,的所有可能取值為:因為在2018年從市到市乘坐高鐵的所有成年人中,隨機選取人次,此人為老年人概率是,所以,,,所以隨機變量的分布列為:故.(3)答案不唯一,言之有理即可.如可以從滿意度的均值來分析問題,
參考答案如下:由表可知,乘坐高鐵的人滿意度均值為:乘坐飛機的人滿意度均值為:因為,所以建議甲乘坐高鐵從市到市.【點睛】本題主要
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《社區(qū)足球賽方案》課件
- 《汽車客運站調研》課件
- 2024年黑龍江林業(yè)職業(yè)技術學院單招職業(yè)技能測試題庫完整答案
- 單位管理制度集合大全【人事管理篇】
- 《綜合分析觀點類》課件
- 單位管理制度匯編大全【人員管理】
- 2024的前臺工作計劃(35篇)
- 單位管理制度范文大合集【職工管理篇】
- 單位管理制度范例匯編【人員管理篇】十篇
- 《禽流感的預防措施》課件
- 結節(jié)性癢疹護理查房課件
- 四川省廣元市2022-2023學年八年級上學期語文期末試卷(含答案)
- 2020山東春季高考數字媒體真題
- 駕駛員安全春運期間駕駛員安全培訓
- 2023UPS維保服務合同
- 公務員調任(轉任)審批表 - 陽春人才網
- IE部成立工作規(guī)劃
- 單體調試及試運方案
- 網球技術與戰(zhàn)術-華東師范大學中國大學mooc課后章節(jié)答案期末考試題庫2023年
- 2023年35kV集電線路直埋施工方案
- 思政教師培訓心得體會2021
評論
0/150
提交評論