2025屆湖南省長(zhǎng)沙市周南梅溪湖中學(xué)高三第三次測(cè)評(píng)數(shù)學(xué)試卷含解析_第1頁(yè)
2025屆湖南省長(zhǎng)沙市周南梅溪湖中學(xué)高三第三次測(cè)評(píng)數(shù)學(xué)試卷含解析_第2頁(yè)
2025屆湖南省長(zhǎng)沙市周南梅溪湖中學(xué)高三第三次測(cè)評(píng)數(shù)學(xué)試卷含解析_第3頁(yè)
2025屆湖南省長(zhǎng)沙市周南梅溪湖中學(xué)高三第三次測(cè)評(píng)數(shù)學(xué)試卷含解析_第4頁(yè)
2025屆湖南省長(zhǎng)沙市周南梅溪湖中學(xué)高三第三次測(cè)評(píng)數(shù)學(xué)試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩15頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2025屆湖南省長(zhǎng)沙市周南梅溪湖中學(xué)高三第三次測(cè)評(píng)數(shù)學(xué)試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫(xiě)在試題卷和答題卡上。用2B鉛筆將試卷類(lèi)型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫(xiě)在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無(wú)效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知,且,則的值為()A. B. C. D.2.已知等差數(shù)列{an},則“a2>a1”是“數(shù)列{an}為單調(diào)遞增數(shù)列”的()A.充分而不必要條件B.必要而不充分條件C.充分必要條件D.既不充分也不必要條件3.在各項(xiàng)均為正數(shù)的等比數(shù)列中,若,則()A. B.6 C.4 D.54.已知函數(shù)滿足,且,則不等式的解集為()A. B. C. D.5.在中,是的中點(diǎn),,點(diǎn)在上且滿足,則等于()A. B. C. D.6.以下三個(gè)命題:①在勻速傳遞的產(chǎn)品生產(chǎn)流水線上,質(zhì)檢員每10分鐘從中抽取一件產(chǎn)品進(jìn)行某項(xiàng)指標(biāo)檢測(cè),這樣的抽樣是分層抽樣;②若兩個(gè)變量的線性相關(guān)性越強(qiáng),則相關(guān)系數(shù)的絕對(duì)值越接近于1;③對(duì)分類(lèi)變量與的隨機(jī)變量的觀測(cè)值來(lái)說(shuō),越小,判斷“與有關(guān)系”的把握越大;其中真命題的個(gè)數(shù)為()A.3 B.2 C.1 D.07.復(fù)數(shù)滿足,則復(fù)數(shù)等于()A. B. C.2 D.-28.若點(diǎn)(2,k)到直線5x-12y+6=0的距離是4,則k的值是()A.1 B.-3 C.1或 D.-3或9.已知函數(shù)的值域?yàn)?,函?shù),則的圖象的對(duì)稱(chēng)中心為()A. B.C. D.10.如圖所示的“數(shù)字塔”有以下規(guī)律:每一層最左與最右的數(shù)字均為2,除此之外每個(gè)數(shù)字均為其兩肩的數(shù)字之積,則該“數(shù)字塔”前10層的所有數(shù)字之積最接近()A. B. C. D.11.已知、是雙曲線的左右焦點(diǎn),過(guò)點(diǎn)與雙曲線的一條漸近線平行的直線交雙曲線另一條漸近線于點(diǎn),若點(diǎn)在以線段為直徑的圓外,則雙曲線離心率的取值范圍是()A. B. C. D.12.如圖,在直三棱柱中,,,點(diǎn)分別是線段的中點(diǎn),,分別記二面角,,的平面角為,則下列結(jié)論正確的是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.給出以下式子:①tan25°+tan35°tan25°tan35°;②2(sin35°cos25°+cos35°cos65°);③其中,結(jié)果為的式子的序號(hào)是_____.14.設(shè)滿足約束條件,則的取值范圍是______.15.已知數(shù)列遞增的等比數(shù)列,若,,則______.16.根據(jù)如圖所示的偽代碼,輸出的值為_(kāi)_____.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖1,四邊形為直角梯形,,,,,,為線段上一點(diǎn),滿足,為的中點(diǎn),現(xiàn)將梯形沿折疊(如圖2),使平面平面.(1)求證:平面平面;(2)能否在線段上找到一點(diǎn)(端點(diǎn)除外)使得直線與平面所成角的正弦值為?若存在,試確定點(diǎn)的位置;若不存在,請(qǐng)說(shuō)明理由.18.(12分)如圖,在四邊形中,,,.(1)求的長(zhǎng);(2)若的面積為6,求的值.19.(12分)已知函數(shù)(1)求函數(shù)在處的切線方程(2)設(shè)函數(shù),對(duì)于任意,恒成立,求的取值范圍.20.(12分)在三棱錐S-ABC中,∠BAC=∠SBA=∠SCA=90°,∠SAB=45°,∠SAC=60°,D為棱AB的中點(diǎn),SA=2(I)證明:SD⊥BC;(II)求直線SD與平面SBC所成角的正弦值.21.(12分)已知函數(shù)(,),.(Ⅰ)討論的單調(diào)性;(Ⅱ)若對(duì)任意的,恒成立,求實(shí)數(shù)的取值范圍.22.(10分)已知函數(shù).(1)討論的單調(diào)性;(2)若在定義域內(nèi)是增函數(shù),且存在不相等的正實(shí)數(shù),使得,證明:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】

由及得到、,進(jìn)一步得到,再利用兩角差的正切公式計(jì)算即可.【詳解】因?yàn)?,所以,又,所以,,所?故選:A.【點(diǎn)睛】本題考查三角函數(shù)誘導(dǎo)公式、二倍角公式以及兩角差的正切公式的應(yīng)用,考查學(xué)生的基本計(jì)算能力,是一道基礎(chǔ)題.2、C【解析】試題分析:根據(jù)充分條件和必要條件的定義進(jìn)行判斷即可.解:在等差數(shù)列{an}中,若a2>a1,則d>0,即數(shù)列{an}為單調(diào)遞增數(shù)列,若數(shù)列{an}為單調(diào)遞增數(shù)列,則a2>a1,成立,即“a2>a1”是“數(shù)列{an}為單調(diào)遞增數(shù)列”充分必要條件,故選C.考點(diǎn):必要條件、充分條件與充要條件的判斷.3、D【解析】

由對(duì)數(shù)運(yùn)算法則和等比數(shù)列的性質(zhì)計(jì)算.【詳解】由題意.故選:D.【點(diǎn)睛】本題考查等比數(shù)列的性質(zhì),考查對(duì)數(shù)的運(yùn)算法則.掌握等比數(shù)列的性質(zhì)是解題關(guān)鍵.4、B【解析】

構(gòu)造函數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,即可得到結(jié)論.【詳解】設(shè),則函數(shù)的導(dǎo)數(shù),,,即函數(shù)為減函數(shù),,,則不等式等價(jià)為,則不等式的解集為,即的解為,,由得或,解得或,故不等式的解集為.故選:.【點(diǎn)睛】本題主要考查利用導(dǎo)數(shù)研究函數(shù)單調(diào)性,根據(jù)函數(shù)的單調(diào)性解不等式,考查學(xué)生分析問(wèn)題解決問(wèn)題的能力,是難題.5、B【解析】

由M是BC的中點(diǎn),知AM是BC邊上的中線,又由點(diǎn)P在AM上且滿足可得:P是三角形ABC的重心,根據(jù)重心的性質(zhì),即可求解.【詳解】解:∵M(jìn)是BC的中點(diǎn),知AM是BC邊上的中線,又由點(diǎn)P在AM上且滿足∴P是三角形ABC的重心∴又∵AM=1∴∴故選B.【點(diǎn)睛】判斷P點(diǎn)是否是三角形的重心有如下幾種辦法:①定義:三條中線的交點(diǎn).②性質(zhì):或取得最小值③坐標(biāo)法:P點(diǎn)坐標(biāo)是三個(gè)頂點(diǎn)坐標(biāo)的平均數(shù).6、C【解析】

根據(jù)抽樣方式的特征,可判斷①;根據(jù)相關(guān)系數(shù)的性質(zhì),可判斷②;根據(jù)獨(dú)立性檢驗(yàn)的方法和步驟,可判斷③.【詳解】①根據(jù)抽樣是間隔相同,且樣本間無(wú)明顯差異,故①應(yīng)是系統(tǒng)抽樣,即①為假命題;②兩個(gè)隨機(jī)變量相關(guān)性越強(qiáng),則相關(guān)系數(shù)的絕對(duì)值越接近于1;兩個(gè)隨機(jī)變量相關(guān)性越弱,則相關(guān)系數(shù)的絕對(duì)值越接近于0;故②為真命題;③對(duì)分類(lèi)變量與的隨機(jī)變量的觀測(cè)值來(lái)說(shuō),越小,“與有關(guān)系”的把握程度越小,故③為假命題.故選:.【點(diǎn)睛】本題以命題的真假判斷為載體考查了抽樣方法、相關(guān)系數(shù)、獨(dú)立性檢驗(yàn)等知識(shí)點(diǎn),屬于基礎(chǔ)題.7、B【解析】

通過(guò)復(fù)數(shù)的模以及復(fù)數(shù)的代數(shù)形式混合運(yùn)算,化簡(jiǎn)求解即可.【詳解】復(fù)數(shù)滿足,∴,故選B.【點(diǎn)睛】本題主要考查復(fù)數(shù)的基本運(yùn)算,復(fù)數(shù)模長(zhǎng)的概念,屬于基礎(chǔ)題.8、D【解析】

由題得,解方程即得k的值.【詳解】由題得,解方程即得k=-3或.故答案為:D【點(diǎn)睛】(1)本題主要考查點(diǎn)到直線的距離公式,意在考查學(xué)生對(duì)該知識(shí)的掌握水平和計(jì)算推理能力.(2)點(diǎn)到直線的距離.9、B【解析】

由值域?yàn)榇_定的值,得,利用對(duì)稱(chēng)中心列方程求解即可【詳解】因?yàn)?,又依題意知的值域?yàn)?,所以得,,所以,令,得,則的圖象的對(duì)稱(chēng)中心為.故選:B【點(diǎn)睛】本題考查三角函數(shù)的圖像及性質(zhì),考查函數(shù)的對(duì)稱(chēng)中心,重點(diǎn)考查值域的求解,易錯(cuò)點(diǎn)是對(duì)稱(chēng)中心縱坐標(biāo)錯(cuò)寫(xiě)為010、A【解析】

結(jié)合所給數(shù)字特征,我們可將每層數(shù)字表示成2的指數(shù)的形式,觀察可知,每層指數(shù)的和成等比數(shù)列分布,結(jié)合等比數(shù)列前項(xiàng)和公式和對(duì)數(shù)恒等式即可求解【詳解】如圖,將數(shù)字塔中的數(shù)寫(xiě)成指數(shù)形式,可發(fā)現(xiàn)其指數(shù)恰好構(gòu)成“楊輝三角”,前10層的指數(shù)之和為,所以原數(shù)字塔中前10層所有數(shù)字之積為.故選:A【點(diǎn)睛】本題考查與“楊輝三角”有關(guān)的規(guī)律求解問(wèn)題,邏輯推理,等比數(shù)列前項(xiàng)和公式應(yīng)用,屬于中檔題11、A【解析】雙曲線﹣=1的漸近線方程為y=x,不妨設(shè)過(guò)點(diǎn)F1與雙曲線的一條漸過(guò)線平行的直線方程為y=(x﹣c),與y=﹣x聯(lián)立,可得交點(diǎn)M(,﹣),∵點(diǎn)M在以線段F1F1為直徑的圓外,∴|OM|>|OF1|,即有+>c1,∴>3,即b1>3a1,∴c1﹣a1>3a1,即c>1a.則e=>1.∴雙曲線離心率的取值范圍是(1,+∞).故選:A.點(diǎn)睛:解決橢圓和雙曲線的離心率的求值及范圍問(wèn)題其關(guān)鍵就是確立一個(gè)關(guān)于a,b,c的方程或不等式,再根據(jù)a,b,c的關(guān)系消掉b得到a,c的關(guān)系式,建立關(guān)于a,b,c的方程或不等式,要充分利用橢圓和雙曲線的幾何性質(zhì)、點(diǎn)的坐標(biāo)的范圍等.12、D【解析】

過(guò)點(diǎn)作,以為原點(diǎn),為軸,為軸,為軸,建立空間直角坐標(biāo)系,利用向量法求解二面角的余弦值得答案.【詳解】解:因?yàn)?,,所以,即過(guò)點(diǎn)作,以為原點(diǎn),為軸,為軸,為軸,建立空間直角坐標(biāo)系,則,0,,,,,,0,,,1,,,,,,,設(shè)平面的法向量,則,取,得,同理可求平面的法向量,平面的法向量,平面的法向量.,,..故選:D.【點(diǎn)睛】本題考查二面角的大小的判斷,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、①②③【解析】

由已知分別結(jié)合和差角的正切及正弦余弦公式進(jìn)行化簡(jiǎn)即可求解.【詳解】①∵tan60°=tan(25°+35°),tan25°+tan35°tan25°tan35°;tan25°tan35°,,②2(sin35°cos25°+cos35°cos65°)=2(sin35°cos25°+cos35°sin25°),=2sin60°;③tan(45°+15°)=tan60°;故答案為:①②③【點(diǎn)睛】本題主要考查了兩角和與差的三角公式在三角化簡(jiǎn)求值中的應(yīng)用,屬于中檔試題.14、【解析】

作出可行域,將目標(biāo)函數(shù)整理為可視為可行解與的斜率,則由圖可知或,分別計(jì)算出與,再由不等式的簡(jiǎn)單性質(zhì)即可求得答案.【詳解】作出滿足約束條件的可行域,顯然當(dāng)時(shí),z=0;當(dāng)時(shí)將目標(biāo)函數(shù)整理為可視為可行解與的斜率,則由圖可知或顯然,聯(lián)立,所以則或,故或綜上所述,故答案為:【點(diǎn)睛】本題考查分式型目標(biāo)函數(shù)的線性規(guī)劃問(wèn)題,屬于簡(jiǎn)單題.15、【解析】

,建立方程組,且,求出,進(jìn)而求出的公比,即可求出結(jié)論.【詳解】數(shù)列遞增的等比數(shù)列,,,解得,所以的公比為,.

故答案為:.【點(diǎn)睛】本題考查等比數(shù)列的性質(zhì)、通項(xiàng)公式,屬于基礎(chǔ)題.16、7【解析】

表示初值S=1,i=1,分三次循環(huán)計(jì)算得S=10>0,輸出i=7.【詳解】S=1,i=1第一次循環(huán):S=1+1=2,i=1+2=3;第二次循環(huán):S=2+3=5,i=3+2=5;第三次循環(huán):S=5+5=10,i=5+2=7;S=10>9,循環(huán)結(jié)束,輸出:i=7.故答案為:7【點(diǎn)睛】本題考查在程序語(yǔ)句的背景下已知輸入的循環(huán)結(jié)構(gòu)求輸出值問(wèn)題,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)證明見(jiàn)解析;(2)存在點(diǎn)是線段的中點(diǎn),使得直線與平面所成角的正弦值為.【解析】

(1)在直角梯形中,根據(jù),,得為等邊三角形,再由余弦定理求得,滿足,得到,再根據(jù)平面平面,利用面面垂直的性質(zhì)定理證明.(2)建立空間直角坐標(biāo)系:假設(shè)在上存在一點(diǎn)使直線與平面所成角的正弦值為,且,,求得平面的一個(gè)法向量,再利用線面角公式求解.【詳解】(1)證明:在直角梯形中,,,因此為等邊三角形,從而,又,由余弦定理得:,∴,即,且折疊后與位置關(guān)系不變,又∵平面平面,且平面平面.∴平面,∵平面,∴平面平面.(2)∵為等邊三角形,為的中點(diǎn),∴,又∵平面平面,且平面平面,∴平面,取的中點(diǎn),連結(jié),則,從而,以為坐標(biāo)原點(diǎn)建立如圖所示的空間直角坐標(biāo)系:則,,則,假設(shè)在上存在一點(diǎn)使直線與平面所成角的正弦值為,且,,∵,∴,故,∴,又,該平面的法向量為,,令得,∴,解得或(舍),綜上可知,存在點(diǎn)是線段的中點(diǎn),使得直線與平面所成角的正弦值為.【點(diǎn)睛】本題主要考查面面垂直的性質(zhì)定理和向量法研究線面角問(wèn)題,還考查了轉(zhuǎn)化化歸的思想和運(yùn)算求解的能力,屬于中檔題.18、(1)(2)【解析】

(1)利用余弦定理可得的長(zhǎng);(2)利用面積得出,結(jié)合正弦定理可得.【詳解】解:(1)由題可知.在中,,所以.(2),則.又,所以.【點(diǎn)睛】本題主要考查利用正弦定理和余弦定理解三角形,已知角較多時(shí)一般選用正弦定理,已知邊較多時(shí)一般選用余弦定理.19、(1);(2)【解析】

(1)求出,即可求出切線的點(diǎn)斜式方程,整理即可;(2)的取值范圍滿足,,求出,當(dāng)時(shí)求出,的解,得到單調(diào)區(qū)間,極小值最小值即可.【詳解】(1)由于,此時(shí)切點(diǎn)坐標(biāo)為所以切線方程為.(2)由已知,故.由于,故,設(shè)由于在單調(diào)遞增同時(shí)時(shí),,時(shí),,故存在使得且當(dāng)時(shí),當(dāng)時(shí),所以當(dāng)時(shí),當(dāng)時(shí),所以當(dāng)時(shí),取得極小值,也是最小值,故由于,所以,.【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義、不等式恒成立問(wèn)題,應(yīng)用導(dǎo)數(shù)求最值是解題的關(guān)鍵,考查邏輯推理、數(shù)學(xué)計(jì)算能力,屬于中檔題.20、(I)證明見(jiàn)解析;(II)1【解析】

(I)過(guò)D作DE⊥BC于E,連接SE,根據(jù)勾股定理得到SE⊥BC,DE⊥BC得到BC⊥平面SED,得到證明.(II)過(guò)點(diǎn)D作DF⊥SE于F,證明DF⊥平面SBC,故∠ESD為直線SD與平面SBC所成角,計(jì)算夾角得到答案.【詳解】(I)過(guò)D作DE⊥BC于E,連接SE,根據(jù)角度的垂直關(guān)系易知:AC=1,AB=SB=2,CS=CB=3,故DE=BDsin∠CBD=6根據(jù)余弦定理:13+SE2-2故SE⊥BC,DE⊥BC,SE∩DE=E,故BC⊥平面SED,SD?平面SED,故SD⊥BC.(II)過(guò)點(diǎn)D作DF⊥SE于F,BC⊥平面SED,DF?平面SED,故DF⊥BC,DF⊥SE,BC∩SE=E,故DF⊥平面SBC,故∠ESD為直線SD與平面SBC所成角,SD2=S故sin∠ESD=【點(diǎn)睛】本題考查了線線垂直,線面

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論