版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
函數(shù)與導數(shù)專項測試卷考試時間:120分鐘滿分:150分一、單選題:本大題共8小題,每個小題5分,共40分.在每小題給出的選項中,只有一項是符合題目要求的.1.(2023·遼寧·遼寧實驗中學校考模擬預測)下列函數(shù)不是偶函數(shù)的是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】根據(jù)函數(shù)的奇偶性的定義求解.【詳解】對于A項,SKIPIF1<0,定義域為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0為偶函數(shù);對于B項,定義域為SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0為偶函數(shù);對于C項,SKIPIF1<0的定義域為SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0不是偶函數(shù);對于D項,SKIPIF1<0的定義域為SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0是偶函數(shù).故選:C.2.(2022·吉林·東北師大附中??寄M預測)一種藥在病人血液中的量不低于1800mg時才有療效,如果用藥前,病人血液中該藥的量為0mg,用藥后,藥在血液中以每小時20%的比例衰減.現(xiàn)給某病人靜脈注射了3600mg的此藥,為了持續(xù)保持療效,則最長需要在多少小時后再次注射此藥(SKIPIF1<0,結果精確到0.1)(
)A.2.7 B.2.9 C.3.1 D.3.3【答案】C【分析】根據(jù)指數(shù)函數(shù)與對數(shù)函數(shù)的運算法則即可求解.【詳解】設注射后經過的時間為SKIPIF1<0,血液中藥物的含量為SKIPIF1<0,則有SKIPIF1<0,因為藥在病人血液中的量不低于1800mg時才有療效,所以令SKIPIF1<0,解得SKIPIF1<0.故選:C.3.(2023·全國·模擬預測)高斯是德國著名的數(shù)學家,近代數(shù)學奠基者之一,享有“數(shù)學王子”的稱號,設SKIPIF1<0,用SKIPIF1<0表示不超過SKIPIF1<0的最大整數(shù),SKIPIF1<0也被稱為“高斯函數(shù)”,例如SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,設SKIPIF1<0為函數(shù)SKIPIF1<0的零點,則SKIPIF1<0(
)A.2 B.3 C.4 D.5【答案】A【分析】首先判斷函數(shù)的單調性,再根據(jù)零點存在性定理判斷SKIPIF1<0所在區(qū)間,最后根據(jù)高斯函數(shù)的定義計算可得.【詳解】解:因為SKIPIF1<0與SKIPIF1<0在SKIPIF1<0上單調遞增,所以SKIPIF1<0在SKIPIF1<0上單調遞增,又SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上存在唯一零點SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0.故選:A4.(2021·天津薊州·天津市薊州區(qū)第一中學??寄M預測)已知函數(shù)SKIPIF1<0是SKIPIF1<0上的單調函數(shù),則實數(shù)SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】由函數(shù)可得SKIPIF1<0且SKIPIF1<0,故可得函數(shù)只能是SKIPIF1<0上的單調遞減函數(shù),然后列不等式即可【詳解】由SKIPIF1<0可得SKIPIF1<0且SKIPIF1<0,所以當SKIPIF1<0時,SKIPIF1<0不可能是增函數(shù),所以函數(shù)SKIPIF1<0在SKIPIF1<0上不可能是增函數(shù),則函數(shù)SKIPIF1<0是SKIPIF1<0上的單調遞減函數(shù),所以SKIPIF1<0,解得SKIPIF1<0,綜上:實數(shù)a的取值范圍為SKIPIF1<0,故選:B5.(2023·河南信陽·河南省信陽市第二高級中學校聯(lián)考一模)已知函數(shù)SKIPIF1<0對SKIPIF1<0均滿足SKIPIF1<0,其中SKIPIF1<0是SKIPIF1<0的導數(shù),則下列不等式恒成立的是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】根據(jù)給定的等式,構造函數(shù)并探討其單調性,再逐項計算判斷作答.【詳解】SKIPIF1<0,令SKIPIF1<0,求導得:SKIPIF1<0,當SKIPIF1<0時SKIPIF1<0,當SKIPIF1<0時SKIPIF1<0,因此函數(shù)SKIPIF1<0在SKIPIF1<0上單調遞增,在SKIPIF1<0上單調遞減,對于A,SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,A正確;對于B,SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,B錯誤;對于C,SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,C錯誤;對于D,SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,D錯誤.故選:A6.(2023·青海海東·統(tǒng)考一模)已知定義在SKIPIF1<0上的函數(shù)SKIPIF1<0的導函數(shù)為SKIPIF1<0,若SKIPIF1<0,且SKIPIF1<0,則不等式SKIPIF1<0的解集是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】設SKIPIF1<0,求導可得SKIPIF1<0在SKIPIF1<0上單調遞減,再根據(jù)SKIPIF1<0轉化為SKIPIF1<0,再結合SKIPIF1<0的單調性求解即可.【詳解】設SKIPIF1<0,則SKIPIF1<0.因為SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調遞減.不等式SKIPIF1<0等價于不等式SKIPIF1<0,即SKIPIF1<0.因為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.因為SKIPIF1<0在SKIPIF1<0上單調遞減,所以SKIPIF1<0,解得SKIPIF1<0故選:A7.(2021·陜西漢中·統(tǒng)考模擬預測)已知定義在SKIPIF1<0上的函數(shù)SKIPIF1<0,其導函數(shù)為SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0的大小關系是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】根據(jù)題意當SKIPIF1<0時,SKIPIF1<0,結合導數(shù)的運算法則可構造函數(shù)SKIPIF1<0,由此判斷其單調性,利用函數(shù)的單調性,即可判斷SKIPIF1<0的大小.【詳解】設SKIPIF1<0,則SKIPIF1<0,由題意知當SKIPIF1<0時,SKIPIF1<0,即SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0時單調遞增,故SKIPIF1<0,即SKIPIF1<0,故選:D.8.(2022·江蘇南京·模擬預測)已知函數(shù)SKIPIF1<0(SKIPIF1<0),且SKIPIF1<0在SKIPIF1<0有兩個零點,則SKIPIF1<0的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】根據(jù)給定條件,利用零點的意義等價轉化,構造函數(shù)SKIPIF1<0,再借助導數(shù)探討函數(shù)SKIPIF1<0在SKIPIF1<0有兩個零點作答.【詳解】SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0得,SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,依題意,函數(shù)SKIPIF1<0在SKIPIF1<0有兩個零點,顯然SKIPIF1<0,而SKIPIF1<0在SKIPIF1<0上單調遞增,則有SKIPIF1<0,當SKIPIF1<0或SKIPIF1<0,即SKIPIF1<0或SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0上單調遞增或單調遞減,即有函數(shù)SKIPIF1<0在SKIPIF1<0只有一個零點1,因此SKIPIF1<0,此時當SKIPIF1<0時,SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,函數(shù)SKIPIF1<0在SKIPIF1<0上單調遞減,在SKIPIF1<0單調遞增,則SKIPIF1<0,要函數(shù)SKIPIF1<0在SKIPIF1<0有兩個零點,當且僅當SKIPIF1<0在SKIPIF1<0上有一個零點,即有SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0的取值范圍SKIPIF1<0.故選:C二、多選題:本大題共4小題,每個小題5分,共20分.在每小題給出的選項中,只有一項或者多項是符合題目要求的.9.(2023·安徽淮南·統(tǒng)考一模)已知函數(shù)SKIPIF1<0,則(
)A.SKIPIF1<0的值域為SKIPIF1<0B.直線SKIPIF1<0是曲線SKIPIF1<0的一條切線C.SKIPIF1<0圖象的對稱中心為SKIPIF1<0D.方程SKIPIF1<0有三個實數(shù)根【答案】BD【分析】A.分SKIPIF1<0兩種情況求函數(shù)的值域;B.利用導數(shù)求函數(shù)的切線,判斷選項;C.利用平移判斷函數(shù)的對稱中心;D.首先求SKIPIF1<0的值,再求解方程的實數(shù)根.【詳解】A.SKIPIF1<0時,SKIPIF1<0,當SKIPIF1<0時等號成立,當SKIPIF1<0時,SKIPIF1<0,當SKIPIF1<0時等號成立,故A錯誤;B.令SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0,所以圖象在點SKIPIF1<0處的切線方程是SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0,所以圖象在點SKIPIF1<0處的切線方程是SKIPIF1<0,得SKIPIF1<0,故B正確;C.SKIPIF1<0的對稱中心是SKIPIF1<0,所以SKIPIF1<0的對稱中心是SKIPIF1<0,向右平移1個單位得SKIPIF1<0,對稱中心是SKIPIF1<0,故C錯誤;D.SKIPIF1<0,解得:SKIPIF1<0或SKIPIF1<0,當SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0,1個實根,當SKIPIF1<0時,得SKIPIF1<0或SKIPIF1<0,2個實根,所以共3個實根,故D正確.故選:BD10.(2023·安徽馬鞍山·統(tǒng)考一模)已知函數(shù)SKIPIF1<0,若SKIPIF1<0恒成立,則實數(shù)SKIPIF1<0的可能的值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】AD【分析】根據(jù)SKIPIF1<0轉化成SKIPIF1<0恒成立,構造函數(shù)SKIPIF1<0利用導數(shù)求解SKIPIF1<0的單調性,問題進一步轉化成SKIPIF1<0恒成立,構造SKIPIF1<0,求解最值即可.【詳解】SKIPIF1<0,故SKIPIF1<0恒成立,轉化成SKIPIF1<0恒成立,記SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0單調遞增,故由SKIPIF1<0得SKIPIF1<0,故SKIPIF1<0恒成立,記SKIPIF1<0,故當SKIPIF1<0時,SKIPIF1<0單調遞減,當SKIPIF1<0時,SKIPIF1<0單調遞增,故當SKIPIF1<0時,SKIPIF1<0取最大值SKIPIF1<0,故由SKIPIF1<0恒成立,即SKIPIF1<0,故SKIPIF1<0,故選:AD【點睛】本題主要考查導數(shù)在函數(shù)中的應用,著重考查了轉化與化歸思想、邏輯推理能力與計算能力,對導數(shù)的應用的考查主要從以下幾個角度進行:(1)考查導數(shù)的幾何意義,求解曲線在某點處的切線方程;(2)利用導數(shù)求函數(shù)的單調區(qū)間,判斷單調性;已知單調性,求參數(shù);(3)利用導數(shù)求函數(shù)的最值(極值),解決函數(shù)的恒成立與有解問題,同時注意數(shù)形結合思想的應用.11.(2023·廣東肇慶·統(tǒng)考二模)函數(shù)SKIPIF1<0的部分圖像如圖所示,SKIPIF1<0,則下列選項中正確的有(
)A.SKIPIF1<0的最小正周期為SKIPIF1<0B.SKIPIF1<0是奇函數(shù)C.SKIPIF1<0的單調遞增區(qū)間為SKIPIF1<0D.SKIPIF1<0,其中SKIPIF1<0為SKIPIF1<0的導函數(shù)【答案】AD【分析】根據(jù)題意可求得函數(shù)的周期,即可判斷A,進而可求得SKIPIF1<0,再根據(jù)待定系數(shù)法可求得SKIPIF1<0,再根據(jù)三角函數(shù)的奇偶性可判斷B,根據(jù)余弦函數(shù)的單調性即可判斷C,求導計算即可判斷D.【詳解】解:由題意可得SKIPIF1<0,所以SKIPIF1<0,故A正確;則SKIPIF1<0,所以SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0為偶函數(shù),故B錯誤;令SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0的單調遞增區(qū)間為SKIPIF1<0,故C錯誤;SKIPIF1<0,則SKIPIF1<0,故D正確.故選:AD.12.(2023·湖南岳陽·統(tǒng)考一模)已知函數(shù)SKIPIF1<0,則(
)A.SKIPIF1<0是周期函數(shù) B.函數(shù)SKIPIF1<0在定義域上是單調遞增函數(shù)C.函數(shù)SKIPIF1<0是偶函數(shù) D.函數(shù)SKIPIF1<0的圖象關于點SKIPIF1<0對稱【答案】ABD【分析】根據(jù)正弦函數(shù)周期判斷A,由指數(shù)函數(shù)、反比例函數(shù)的單調性判斷B,根據(jù)奇偶性定義判斷C,由函數(shù)中心對稱充要條件判斷D.【詳解】令SKIPIF1<0,則SKIPIF1<0,所以函數(shù)為周期函數(shù),故A正確;因為SKIPIF1<0,因為SKIPIF1<0在定義域上單調遞減,且SKIPIF1<0,所以由復合函數(shù)的單調性質可得SKIPIF1<0在定義域上是單調遞增函數(shù),故B正確;令SKIPIF1<0,則SKIPIF1<0,所以函數(shù)SKIPIF1<0是奇函數(shù),故C錯誤;因為SKIPIF1<0,所以函數(shù)SKIPIF1<0的圖象關于點SKIPIF1<0對稱,故D正確.故選:ABD
三、填空題:本大題共4小題,每小題5分,共20分.把答案填在答題卡中的橫線上.13.(2022·四川樂山·統(tǒng)考一模)函數(shù)SKIPIF1<0在SKIPIF1<0上所有零點之和為__________________.【答案】4【分析】利用數(shù)形結合,將函數(shù)零點問題轉化為函數(shù)SKIPIF1<0和SKIPIF1<0的交點問題,利用函數(shù)的對稱性,可求零點的和.【詳解】函數(shù)SKIPIF1<0,即SKIPIF1<0,函數(shù)SKIPIF1<0和SKIPIF1<0關于點SKIPIF1<0對稱,如圖畫出兩個函數(shù)在區(qū)間SKIPIF1<0的函數(shù)圖象,兩個函數(shù)圖象有4個交點,利用對稱性可知,交點橫坐標的和SKIPIF1<0.故答案為:414.(2023·江西景德鎮(zhèn)·統(tǒng)考模擬預測)已知SKIPIF1<0是定義在SKIPIF1<0上的偶函數(shù),且當SKIPIF1<0時,SKIPIF1<0,則滿足SKIPIF1<0的SKIPIF1<0的取值范圍是_________.【答案】SKIPIF1<0【分析】首先判斷函數(shù)的單調性,根據(jù)偶函數(shù)的性質及單調性原不等式等價于SKIPIF1<0,解得即可.【詳解】解:因為SKIPIF1<0是定義在SKIPIF1<0上的偶函數(shù),且當SKIPIF1<0時,SKIPIF1<0,即SKIPIF1<0在SKIPIF1<0上單調遞增,所以SKIPIF1<0在SKIPIF1<0上單調遞減,則不等式SKIPIF1<0等價于SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,即SKIPIF1<0.故答案為:SKIPIF1<015.(2021·陜西榆林·??寄M預測)函數(shù)SKIPIF1<0的定義域為______.【答案】SKIPIF1<0【分析】根據(jù)函數(shù)的解析式,列出函數(shù)有意義時滿足的不等式,求得答案.【詳解】函數(shù)SKIPIF1<0需滿足SKIPIF1<0,解得SKIPIF1<0且SKIPIF1<0,故函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,故答案為:SKIPIF1<016.(2022·上海徐匯·統(tǒng)考一模)設SKIPIF1<0,函數(shù)SKIPIF1<0的圖像與直線SKIPIF1<0有四個交點,且這些交點的橫坐標分別為SKIPIF1<0,則SKIPIF1<0的取值范圍為___________.【答案】SKIPIF1<0【分析】根據(jù)題意,利用韋達定理,求得SKIPIF1<0,SKIPIF1<0和SKIPIF1<0的關系,以及SKIPIF1<0的范圍,將目標式轉化為關于SKIPIF1<0的函數(shù),借助對勾函數(shù)的單調性,即可求得結果.【詳解】根據(jù)題意,令SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,不妨設SKIPIF1<0作圖如下:又直線SKIPIF1<0的斜率為SKIPIF1<0,數(shù)形結合可知,要滿足題意,SKIPIF1<0;且SKIPIF1<0為方程SKIPIF1<0,即SKIPIF1<0的兩根,當SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0;SKIPIF1<0為方程SKIPIF1<0,即SKIPIF1<0的兩根,當SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0;則SKIPIF1<0SKIPIF1<0,令SKIPIF1<0,由對勾函數(shù)單調性可知SKIPIF1<0在SKIPIF1<0上單調遞減,又SKIPIF1<0,故SKIPIF1<0SKIPIF1<0,即SKIPIF1<0的取值范圍為SKIPIF1<0.故答案為:SKIPIF1<0.【點睛】關鍵點點睛:本題考查函數(shù)與方程;處理問題的關鍵是能夠數(shù)形結合求得SKIPIF1<0,SKIPIF1<0和SKIPIF1<0的關系,從而借助函數(shù)單調性求值域,屬綜合中檔題.
四、解答題:本大題共6小題,共70分.解答應寫出必要的文字說明、證明過程或演算步驟.17.(2023·全國·模擬預測)已知函數(shù)SKIPIF1<0.(1)求函數(shù)SKIPIF1<0的圖象在SKIPIF1<0處的切線方程;(2)判斷函數(shù)SKIPIF1<0的零點個數(shù),并說明理由.【答案】(1)SKIPIF1<0(2)有兩個零點,理由見解析【分析】(1)根據(jù)導數(shù)的幾何意義,結合導數(shù)的運算進行求解即可;(2)令SKIPIF1<0轉化為SKIPIF1<0與SKIPIF1<0圖象交點的個數(shù),利用導數(shù)得到SKIPIF1<0單調性,結合兩個函數(shù)的圖象判斷可得答案.【詳解】(1)SKIPIF1<0,所以切線斜率為SKIPIF1<0,SKIPIF1<0,所以切點坐標為SKIPIF1<0,函數(shù)SKIPIF1<0的圖象在SKIPIF1<0處的切線方程為SKIPIF1<0;(2)有兩個零點,理由如下,令SKIPIF1<0,可得SKIPIF1<0,判斷函數(shù)SKIPIF1<0的零點個數(shù)即判斷SKIPIF1<0與SKIPIF1<0圖象交點的個數(shù),因為SKIPIF1<0為單調遞增函數(shù),SKIPIF1<0,當SKIPIF1<0無限接近于SKIPIF1<0時SKIPIF1<0無限接近于SKIPIF1<0,且SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0單調遞增,當SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0單調遞減,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,且當SKIPIF1<0無限接近于2時SKIPIF1<0無限接近于SKIPIF1<0,所以SKIPIF1<0與SKIPIF1<0的圖象在SKIPIF1<0時有一個交點,在SKIPIF1<0時有一個交點,綜上函數(shù)SKIPIF1<0有2個零點.【點睛】方法點睛:已知函數(shù)有零點(方程有根)求參數(shù)值(取值范圍)常用的方法:(1)直接法:直接求解方程得到方程的根,再通過解不等式確定參數(shù)范圍;(2)分離參數(shù)法:先將參數(shù)分離,轉化成求函數(shù)的值域問題加以解決;(3)數(shù)形結合法:先對解析式變形,進而構造兩個函數(shù),然后在同一平面直角坐標系中畫出函數(shù)的圖象,利用數(shù)形結合的方法求解18.(2023·全國·模擬預測)已知函數(shù)SKIPIF1<0.(1)當SKIPIF1<0時,求函數(shù)SKIPIF1<0的單調區(qū)間;(2)是否存在正整數(shù)m,使得SKIPIF1<0恒成立,若存在求出m的最小值,若不存在說明理由.【答案】(1)函數(shù)SKIPIF1<0的單調減區(qū)間為SKIPIF1<0,單調增區(qū)間為SKIPIF1<0.(2)存在正整數(shù)SKIPIF1<0【分析】(1)當SKIPIF1<0時,對函數(shù)SKIPIF1<0求導,令SKIPIF1<0和SKIPIF1<0,即可求出函數(shù)SKIPIF1<0的單調區(qū)間;(2)要使SKIPIF1<0恒成立,即SKIPIF1<0恒成立,討論SKIPIF1<0和SKIPIF1<0,求出SKIPIF1<0的單調性,即可知要使SKIPIF1<0,令SKIPIF1<0,對SKIPIF1<0求導,得出SKIPIF1<0的單調性,即可得解.【詳解】(1)當SKIPIF1<0時,函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,解得:SKIPIF1<0;令SKIPIF1<0,解得:SKIPIF1<0,所以函數(shù)SKIPIF1<0的單調減區(qū)間為SKIPIF1<0,單調增區(qū)間為SKIPIF1<0.(2)SKIPIF1<0的定義域為SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0,即SKIPIF1<0,函數(shù)SKIPIF1<0在SKIPIF1<0上單調遞增,無最大值;若SKIPIF1<0,即SKIPIF1<0,函數(shù)SKIPIF1<0在SKIPIF1<0上單調遞增,在SKIPIF1<0上單調遞減.當SKIPIF1<0時,函數(shù)SKIPIF1<0取得最大值,且SKIPIF1<0,要使SKIPIF1<0恒成立,即SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0所以SKIPIF1<0在SKIPIF1<0上單調遞增,當SKIPIF1<0趨近于2時,SKIPIF1<0,SKIPIF1<0,所以存在最小正整數(shù)SKIPIF1<0,使得SKIPIF1<0,即是使得SKIPIF1<0恒成立.19.(2023·四川綿陽·統(tǒng)考模擬預測)已知函數(shù)SKIPIF1<0.(1)當SKIPIF1<0時,求SKIPIF1<0的極值;(2)設SKIPIF1<0在區(qū)間SKIPIF1<0上的最小值為SKIPIF1<0,求SKIPIF1<0及SKIPIF1<0的最大值.【答案】(1)極大值SKIPIF1<0,極小值0(2)SKIPIF1<0,SKIPIF1<0的最大值為0,【分析】(1)由極值的概念求解,(2)根據(jù)SKIPIF1<0的取值分類討論求解SKIPIF1<0的單調區(qū)間后得SKIPIF1<0,再由導數(shù)判斷單調性后求解最大值,【詳解】(1)當SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,當SKIPIF1<0或SKIPIF1<0時,SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0和SKIPIF1<0上單調遞增,在SKIPIF1<0上單調遞減,SKIPIF1<0的極大值為SKIPIF1<0,極小值為SKIPIF1<0,(2)SKIPIF1<0,SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調遞增,SKIPIF1<0在區(qū)間SKIPIF1<0上的最小值為SKIPIF1<0,當SKIPIF1<0時,當SKIPIF1<0或SKIPIF1<0時,SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0和SKIPIF1<0上單調遞增,在SKIPIF1<0上單調遞減,SKIPIF1<0在區(qū)間SKIPIF1<0上的最小值為SKIPIF1<0,當SKIPIF1<0時,同理得SKIPIF1<0在SKIPIF1<0和SKIPIF1<0上單調遞增,在SKIPIF1<0上單調遞減,若SKIPIF1<0,SKIPIF1<0在區(qū)間SKIPIF1<0上的最小值為SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0在區(qū)間SKIPIF1<0上的最小值為SKIPIF1<0綜上,SKIPIF1<0令SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0上單調遞增,可知SKIPIF1<0在SKIPIF1<0上單調遞增,故SKIPIF1<0的最大值為0,20.(2023·湖南湘潭·統(tǒng)考二模)已知SKIPIF1<0,曲線SKIPIF1<0在SKIPIF1<0處的切線方程為SKIPIF1<0.(1)求a,b的值;(2)證明:當SKIPIF1<0時,SKIPIF1<0.【答案】(1)SKIPIF1<0(2)證明見解析【分析】(1)根據(jù)切點和斜率求得SKIPIF1<0.(2)化簡SKIPIF1<0,利用構造函數(shù)法,結合導數(shù)證得不等式成立.【詳解】(1)由題可知SKIPIF1<0,即SKIPIF1<0.又SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,即SKIPIF1<0.(2)SKIPIF1<0,SKIPIF1<0,要證SKIPIF1<0,SKIPIF1<0,只需證SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調遞增,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調遞增,則SKIPIF1<0,即當SKIPIF1<0時,SKIPIF1<0.21.(2023·全國·高三專題練習)已知函數(shù)SKIPIF1<0.(1)討論SKIPIF1<0在區(qū)間SKIPIF1<0上的單調性;(2)當SKIPIF1<0時,證明:SKIPIF1<0.【答案】(1)答案見解析;(2)證明見解析.【分析】(1)利用函數(shù)的導數(shù)判斷函數(shù)的單調性,按照SKIPIF1<0和SKIPIF1<0的大小關系分類討論;(2)先轉化需證明的結論,構造函數(shù),利用導數(shù)研究函數(shù)的符號,推得SKIPIF1<0,進而證明結論.【詳解】(1)因為函數(shù)SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,當SKIPIF1<0,即SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0在區(qū)間SKIPIF1<0上單調遞減;當SKIPIF1<0,即SKIPIF1<0時,由SKIPIF1<0,得SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調遞增,在SKIPIF1<0,SKIPIF1<0上單調遞減;綜上可得,當SKIPIF1<0時,SKIPIF1<0在區(qū)間SKIPIF1<0上單調遞減;當SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0上單調遞增,在SKIPIF1<0,SKIPIF1<0上單調遞減;(2)當SKIPIF1<0時,SKIPIF1<0,要證SKIPIF1<0,即證SKIPIF1<0,即證SKIPIF1<0,令SKIPIF1<0,SKIPIF
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度智能車間承包合同示范文本4篇
- 二零二五版教育培訓機構招生與教學質量保證協(xié)議3篇
- 二零二五年度旅游紀念品代售合作協(xié)議3篇
- 中國科學院專業(yè)技術人員2024年度聘用合同書版
- 二零二五年度勞動法與員工勞動能力評估合同4篇
- 二零二五版美容院美容院產品進口與分銷合同4篇
- 2025年度數(shù)據(jù)中心機房租賃合同合法經營保障數(shù)據(jù)安全4篇
- 火災中巖棉材料的耐高溫性能研究
- 二零二五年度非物質文化遺產陳列館設計與施工合同4篇
- 現(xiàn)代家居中多功能閱讀區(qū)的規(guī)劃
- 2025年度公務車輛私人使用管理與責任協(xié)議書3篇
- 售后工程師述職報告
- 綠化養(yǎng)護難點要點分析及技術措施
- 2024年河北省高考歷史試卷(含答案解析)
- 車位款抵扣工程款合同
- 小學六年級數(shù)學奧數(shù)題100題附答案(完整版)
- 高中綜評項目活動設計范文
- 英漢互譯單詞練習打印紙
- 2023湖北武漢華中科技大學招聘實驗技術人員24人筆試參考題庫(共500題)答案詳解版
- 一氯二氟甲烷安全技術說明書MSDS
- 物流簽收回執(zhí)單
評論
0/150
提交評論