江西省興國(guó)縣達(dá)標(biāo)名校2024屆中考押題數(shù)學(xué)預(yù)測(cè)卷含解析_第1頁(yè)
江西省興國(guó)縣達(dá)標(biāo)名校2024屆中考押題數(shù)學(xué)預(yù)測(cè)卷含解析_第2頁(yè)
江西省興國(guó)縣達(dá)標(biāo)名校2024屆中考押題數(shù)學(xué)預(yù)測(cè)卷含解析_第3頁(yè)
江西省興國(guó)縣達(dá)標(biāo)名校2024屆中考押題數(shù)學(xué)預(yù)測(cè)卷含解析_第4頁(yè)
江西省興國(guó)縣達(dá)標(biāo)名校2024屆中考押題數(shù)學(xué)預(yù)測(cè)卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩15頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

江西省興國(guó)縣達(dá)標(biāo)名校2024屆中考押題數(shù)學(xué)預(yù)測(cè)卷考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫(xiě)在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫(xiě)在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫(xiě)在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1.函數(shù)y=中,自變量x的取值范圍是()A.x>3 B.x<3 C.x=3 D.x≠32.一個(gè)多邊形內(nèi)角和是外角和的2倍,它是()A.五邊形 B.六邊形 C.七邊形 D.八邊形3.小明將某圓錐形的冰淇淋紙?zhí)籽厮囊粭l母線展開(kāi)若不考慮接縫,它是一個(gè)半徑為12cm,圓心角為的扇形,則A.圓錐形冰淇淋紙?zhí)椎牡酌姘霃綖?cmB.圓錐形冰淇淋紙?zhí)椎牡酌姘霃綖?cmC.圓錐形冰淇淋紙?zhí)椎母邽镈.圓錐形冰淇淋紙?zhí)椎母邽?.如圖,已知,用尺規(guī)作圖作.第一步的作法以點(diǎn)為圓心,任意長(zhǎng)為半徑畫(huà)弧,分別交,于點(diǎn),第二步的作法是()A.以點(diǎn)為圓心,長(zhǎng)為半徑畫(huà)弧,與第1步所畫(huà)的弧相交于點(diǎn)B.以點(diǎn)為圓心,長(zhǎng)為半徑畫(huà)弧,與第1步所畫(huà)的弧相交于點(diǎn)C.以點(diǎn)為圓心,長(zhǎng)為半徑畫(huà)弧,與第1步所畫(huà)的弧相交于點(diǎn)D.以點(diǎn)為圓心,長(zhǎng)為半徑畫(huà)弧,與第1步所畫(huà)的弧相交于點(diǎn)5.如圖所示的幾何體,它的左視圖與俯視圖都正確的是()A. B. C. D.6.用加減法解方程組時(shí),如果消去y,最簡(jiǎn)捷的方法是()A.①×4﹣②×3 B.①×4+②×3 C.②×2﹣① D.②×2+①7.要使式子有意義,x的取值范圍是()A.x≠1 B.x≠0 C.x>﹣1且≠0 D.x≥﹣1且x≠08.已知關(guān)于x的不等式ax<b的解為x>-2,則下列關(guān)于x的不等式中,解為x<2的是()A.a(chǎn)x+2<-b+2 B.–ax-1<b-1 C.a(chǎn)x>b D.9.將拋物線y=x2﹣x+1先向左平移2個(gè)單位長(zhǎng)度,再向上平移3個(gè)單位長(zhǎng)度,則所得拋物線的表達(dá)式為()A.y=x2+3x+6 B.y=x2+3x C.y=x2﹣5x+10 D.y=x2﹣5x+410.如果(,均為非零向量),那么下列結(jié)論錯(cuò)誤的是()A.// B.-2=0 C.= D.二、填空題(共7小題,每小題3分,滿分21分)11.如圖,在正五邊形ABCDE中,AC與BE相交于點(diǎn)F,則∠AFE的度數(shù)為_(kāi)____.12.在一個(gè)不透明的布袋中,紅色、黑色的玻璃球共有20個(gè),這些球除顏色外其它完全相同.將袋中的球攪勻,從中隨機(jī)摸出一個(gè)球,記下顏色后再放回袋中,不斷地重復(fù)這個(gè)過(guò)程,摸了200次后,發(fā)現(xiàn)有60次摸到黑球,請(qǐng)你估計(jì)這個(gè)袋中紅球約有_____個(gè).13.如圖,這是一幅長(zhǎng)為3m,寬為1m的長(zhǎng)方形世界杯宣傳畫(huà),為測(cè)量宣傳畫(huà)上世界杯圖案的面積,現(xiàn)將宣傳畫(huà)平鋪在地上,向長(zhǎng)方形宣傳畫(huà)內(nèi)隨機(jī)投擲骰子(假設(shè)骰子落在長(zhǎng)方形內(nèi)的每一點(diǎn)都是等可能的),經(jīng)過(guò)大量重復(fù)投擲試驗(yàn),發(fā)現(xiàn)骰子落在世界杯圖案中的頻率穩(wěn)定在常數(shù)0.4附近,由此可估計(jì)宣傳畫(huà)上世界杯圖案的面積約為_(kāi)__________________m1.14.如圖,在扇形OAB中,∠O=60°,OA=4,四邊形OECF是扇形OAB中最大的菱形,其中點(diǎn)E,C,F(xiàn)分別在OA,,OB上,則圖中陰影部分的面積為_(kāi)_________.15.在直角三角形ABC中,∠C=90°,已知sinA=3516.長(zhǎng)、寬分別為a、b的矩形,它的周長(zhǎng)為14,面積為10,則a2b+ab2的值為_(kāi)____.17.二次函數(shù)y=(x﹣2m)2+1,當(dāng)m<x<m+1時(shí),y隨x的增大而減小,則m的取值范圍是_____.三、解答題(共7小題,滿分69分)18.(10分)如圖,AB是⊙O的直徑,點(diǎn)E是AD上的一點(diǎn),∠DBC=∠BED.(1)請(qǐng)判斷直線BC與⊙O的位置關(guān)系,并說(shuō)明理由;(2)已知AD=5,CD=4,求BC的長(zhǎng).19.(5分)先化簡(jiǎn),再求值:a(a﹣3b)+(a+b)2﹣a(a﹣b),其中a=1,b=﹣20.(8分)初三(5)班綜合實(shí)踐小組去湖濱花園測(cè)量人工湖的長(zhǎng),如圖A、D是人工湖邊的兩座雕塑,AB、BC是湖濱花園的小路,小東同學(xué)進(jìn)行如下測(cè)量,B點(diǎn)在A點(diǎn)北偏東60°方向,C點(diǎn)在B點(diǎn)北偏東45°方向,C點(diǎn)在D點(diǎn)正東方向,且測(cè)得AB=20米,BC=40米,求AD的長(zhǎng).(≈1.732,≈1.414,結(jié)果精確到0.01米)21.(10分)已知:如圖,AB為⊙O的直徑,C是BA延長(zhǎng)線上一點(diǎn),CP切⊙O于P,弦PD⊥AB于E,過(guò)點(diǎn)B作BQ⊥CP于Q,交⊙O于H,(1)如圖1,求證:PQ=PE;(2)如圖2,G是圓上一點(diǎn),∠GAB=30°,連接AG交PD于F,連接BF,若tan∠BFE=3,求∠C的度數(shù);(3)如圖3,在(2)的條件下,PD=6,連接QC交BC于點(diǎn)M,求QM的長(zhǎng).22.(10分)如圖,AB是⊙O的直徑,BC⊥AB,垂足為點(diǎn)B,連接CO并延長(zhǎng)交⊙O于點(diǎn)D、E,連接AD并延長(zhǎng)交BC于點(diǎn)F.(1)試判斷∠CBD與∠CEB是否相等,并證明你的結(jié)論;(2)求證:(3)若BC=AB,求tan∠CDF的值.23.(12分)如圖,一農(nóng)戶要建一個(gè)矩形豬舍,豬舍的一邊利用長(zhǎng)為12m的住房墻,另外三邊用25m長(zhǎng)的建筑材料圍成,為方便進(jìn)出,在垂直于住房墻的一邊留一個(gè)1m寬的門,所圍矩形豬舍的長(zhǎng)、寬分別為多少時(shí),豬舍面積為80m2?24.(14分)如圖,梯形ABCD中,AD∥BC,DC⊥BC,且∠B=45°,AD=DC=1,點(diǎn)M為邊BC上一動(dòng)點(diǎn),聯(lián)結(jié)AM并延長(zhǎng)交射線DC于點(diǎn)F,作∠FAE=45°交射線BC于點(diǎn)E、交邊DCN于點(diǎn)N,聯(lián)結(jié)EF.(1)當(dāng)CM:CB=1:4時(shí),求CF的長(zhǎng).(2)設(shè)CM=x,CE=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫(xiě)出定義域.(3)當(dāng)△ABM∽△EFN時(shí),求CM的長(zhǎng).

參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1、D【解析】由題意得,x﹣1≠0,解得x≠1.故選D.2、B【解析】

多邊形的外角和是310°,則內(nèi)角和是2×310=720°.設(shè)這個(gè)多邊形是n邊形,內(nèi)角和是(n﹣2)?180°,這樣就得到一個(gè)關(guān)于n的方程,從而求出邊數(shù)n的值.【詳解】設(shè)這個(gè)多邊形是n邊形,根據(jù)題意得:(n﹣2)×180°=2×310°解得:n=1.故選B.【點(diǎn)睛】本題考查了多邊形的內(nèi)角與外角,熟記內(nèi)角和公式和外角和定理并列出方程是解題的關(guān)鍵.根據(jù)多邊形的內(nèi)角和定理,求邊數(shù)的問(wèn)題就可以轉(zhuǎn)化為解方程的問(wèn)題來(lái)解決.3、C【解析】

根據(jù)圓錐的底面周長(zhǎng)等于側(cè)面展開(kāi)圖的扇形弧長(zhǎng),列出方程求出圓錐的底面半徑,再利用勾股定理求出圓錐的高.【詳解】解:半徑為12cm,圓心角為的扇形弧長(zhǎng)是:,

設(shè)圓錐的底面半徑是rcm,

則,

解得:.

即這個(gè)圓錐形冰淇淋紙?zhí)椎牡酌姘霃绞?cm.

圓錐形冰淇淋紙?zhí)椎母邽椋?/p>

故選:C.【點(diǎn)睛】本題綜合考查有關(guān)扇形和圓錐的相關(guān)計(jì)算解題思路:解決此類問(wèn)題時(shí)要緊緊抓住兩者之間的兩個(gè)對(duì)應(yīng)關(guān)系:圓錐的母線長(zhǎng)等于側(cè)面展開(kāi)圖的扇形半徑;圓錐的底面周長(zhǎng)等于側(cè)面展開(kāi)圖的扇形弧長(zhǎng)正確對(duì)這兩個(gè)關(guān)系的記憶是解題的關(guān)鍵.4、D【解析】

根據(jù)作一個(gè)角等于已知角的作法即可得出結(jié)論.【詳解】解:用尺規(guī)作圖作∠AOC=2∠AOB的第一步是以點(diǎn)O為圓心,以任意長(zhǎng)為半徑畫(huà)?、?,分別交OA、OB于點(diǎn)E、F,

第二步的作圖痕跡②的作法是以點(diǎn)F為圓心,EF長(zhǎng)為半徑畫(huà)弧.

故選:D.【點(diǎn)睛】本題考查的是作圖-基本作圖,熟知作一個(gè)角等于已知角的步驟是解答此題的關(guān)鍵.5、D【解析】試題分析:該幾何體的左視圖是邊長(zhǎng)分別為圓的半徑和直徑的矩形,俯視圖是邊長(zhǎng)分別為圓的直徑和半徑的矩形,故答案選D.考點(diǎn):D.6、D【解析】試題解析:用加減法解方程組時(shí),如果消去y,最簡(jiǎn)捷的方法是②×2+①,故選D.7、D【解析】

根據(jù)二次根式由意義的條件是:被開(kāi)方數(shù)大于或等于1,和分母不等于1,即可求解.【詳解】根據(jù)題意得:,解得:x≥-1且x≠1.故選:D.【點(diǎn)睛】本題考查的知識(shí)點(diǎn)為:分式有意義,分母不為1;二次根式的被開(kāi)方數(shù)是非負(fù)數(shù).8、B【解析】∵關(guān)于x的不等式ax<b的解為x>-2,∴a<0,且,即,∴(1)解不等式ax+2<-b+2可得:ax<-b,,即x>2;(2)解不等式–ax-1<b-1可得:-ax<b,,即x<2;(3)解不等式ax>b可得:,即x<-2;(4)解不等式可得:,即;∴解集為x<2的是B選項(xiàng)中的不等式.故選B.9、A【解析】

先將拋物線解析式化為頂點(diǎn)式,左加右減的原則即可.【詳解】y=x當(dāng)向左平移2個(gè)單位長(zhǎng)度,再向上平移3個(gè)單位長(zhǎng)度,得y=x-故選A.【點(diǎn)睛】本題考查二次函數(shù)的平移;掌握平移的法則“左加右減”,二次函數(shù)的平移一定要將解析式化為頂點(diǎn)式進(jìn)行;10、B【解析】試題解析:向量最后的差應(yīng)該還是向量.故錯(cuò)誤.故選B.二、填空題(共7小題,每小題3分,滿分21分)11、72°【解析】

首先根據(jù)正五邊形的性質(zhì)得到AB=BC=AE,∠ABC=∠BAE=108°,然后利用三角形內(nèi)角和定理得∠BAC=∠BCA=∠ABE=∠AEB=(180°?108°)÷2=36°,最后利用三角形的外角的性質(zhì)得到∠AFE=∠BAC+∠ABE=72°.【詳解】∵五邊形ABCDE為正五邊形,∴AB=BC=AE,∠ABC=∠BAE=108°,∴∠BAC=∠BCA=∠ABE=∠AEB=(180°?108°)÷2=36°,∴∠AFE=∠BAC+∠ABE=72°,故答案為72°.【點(diǎn)睛】本題考查的是正多邊形和圓,利用數(shù)形結(jié)合求解是解答此題的關(guān)鍵12、1【解析】

估計(jì)利用頻率估計(jì)概率可估計(jì)摸到黑球的概率為0.3,然后根據(jù)概率公式計(jì)算這個(gè)口袋中黑球的數(shù)量,繼而得出答案.【詳解】因?yàn)楣裁?00次球,發(fā)現(xiàn)有60次摸到黑球,所以估計(jì)摸到黑球的概率為0.3,所以估計(jì)這個(gè)口袋中黑球的數(shù)量為20×0.3=6(個(gè)),則紅球大約有20-6=1個(gè),故答案為:1.【點(diǎn)睛】本題考查了利用頻率估計(jì)概率:大量重復(fù)實(shí)驗(yàn)時(shí),事件發(fā)生的頻率在某個(gè)固定位置左右擺動(dòng),并且擺動(dòng)的幅度越來(lái)越小,根據(jù)這個(gè)頻率穩(wěn)定性定理,可以用頻率的集中趨勢(shì)來(lái)估計(jì)概率,這個(gè)固定的近似值就是這個(gè)事件的概率.用頻率估計(jì)概率得到的是近似值,隨實(shí)驗(yàn)次數(shù)的增多,值越來(lái)越精確.13、1.4【解析】

由概率估計(jì)圖案在整副畫(huà)中所占比例,再求出圖案的面積.【詳解】估計(jì)宣傳畫(huà)上世界杯圖案的面積約為3×1×0.4=1.4m1.故答案為1.4【點(diǎn)睛】本題考核知識(shí)點(diǎn):幾何概率.解題關(guān)鍵點(diǎn):由幾何概率估計(jì)圖案在整副畫(huà)中所占比例.14、8π﹣8【解析】

連接EF、OC交于點(diǎn)H,根據(jù)正切的概念求出FH,根據(jù)菱形的面積公式求出菱形FOEC的面積,根據(jù)扇形面積公式求出扇形OAB的面積,計(jì)算即可.【詳解】連接EF、OC交于點(diǎn)H,則OH=2,∴FH=OH×tan30°=2,∴菱形FOEC的面積=×4×4=8,扇形OAB的面積==8π,則陰影部分的面積為8π﹣8,故答案為8π﹣8.【點(diǎn)睛】本題考查了扇形面積的計(jì)算、菱形的性質(zhì),熟練掌握扇形的面積公式、菱形的性質(zhì)、靈活運(yùn)用銳角三角函數(shù)的定義是解題的關(guān)鍵.15、35【解析】試題分析:解答此題要利用互余角的三角函數(shù)間的關(guān)系:sin(90°-α)=cosα,cos(90°-α)=sinα.試題解析:∵在△ABC中,∠C=90°,∴∠A+∠B=90°,∴cosB=sinA=35考點(diǎn):互余兩角三角函數(shù)的關(guān)系.16、1.【解析】

由周長(zhǎng)和面積可分別求得a+b和ab的值,再利用因式分解把所求代數(shù)式可化為ab(a+b),代入可求得答案【詳解】∵長(zhǎng)、寬分別為a、b的矩形,它的周長(zhǎng)為14,面積為10,

∴a+b==7,ab=10,

∴a2b+ab2=ab(a+b)=10×7=1,

故答案為:1.【點(diǎn)睛】本題主要考查因式分解的應(yīng)用,把所求代數(shù)式化為ab(a+b)是解題的關(guān)鍵.17、m>1【解析】由條件可知二次函數(shù)對(duì)稱軸為x=2m,且開(kāi)口向上,由二次函數(shù)的性質(zhì)可知在對(duì)稱軸的左側(cè)時(shí)y隨x的增大而減小,可求得m+1<2m,即m>1.故答案為m>1.點(diǎn)睛:本題主要考查二次函數(shù)的性質(zhì),掌握當(dāng)拋物線開(kāi)口向下時(shí),在對(duì)稱軸右側(cè)y隨x的增大而減小是解題的關(guān)鍵.三、解答題(共7小題,滿分69分)18、(1)BC與⊙O相切;理由見(jiàn)解析;(2)BC=6【解析】試題分析:(1)BC與⊙O相切;由已知可得∠BAD=∠BED又由∠DBC=∠BED可得∠BAD=∠DBC,由AB為直徑可得∠ADB=90°,從而可得∠CBO=90°,繼而可得BC與⊙O相切(2)由AB為直徑可得∠ADB=90°,從而可得∠BDC=90°,由BC與⊙O相切,可得∠CBO=90°,從而可得∠BDC=∠CBO,可得ΔABC~ΔBDC,所以得BCCD=ACBC,得試題解析:(1)BC與⊙O相切;∵BD=BD,∴∠BAD=∠BED,∵∠DBC=∠BED,∴∠BAD=∠DBC,∵AB為直徑,∴∠ADB=90°,∴∠BAD+∠ABD=90°,∴∠DBC+∠ABD=90°,∴∠CBO=90°,∴點(diǎn)B在⊙O上,∴BC與(2)∵AB為直徑,∴∠ADB=90°,∴∠BDC=90°,∵BC與⊙O相切,∴∠CBO=90°,∴∠BDC=∠CBO,∴ΔABC~ΔBDC,∴BCCD=ACBC,∴BC考點(diǎn):1.切線的判定與性質(zhì);2.相似三角形的判定與性質(zhì);3.勾股定理.19、【解析】

原式去括號(hào)合并得到最簡(jiǎn)結(jié)果,把a(bǔ)與b的值代入計(jì)算即可求出值;【詳解】解:原式=a2﹣3ab+a2+2ab+b2﹣a2+ab=a2+b2,當(dāng)a=1、b=﹣時(shí),原式=12+(﹣)2=1+=.【點(diǎn)睛】考查了整式的加減-化簡(jiǎn)求值,以及非負(fù)數(shù)的性質(zhì),熟練掌握運(yùn)算法則是解本題的關(guān)鍵.20、AD=38.28米.【解析】

過(guò)點(diǎn)B作BE⊥DA,BF⊥DC,垂足分別為E、F,已知AD=AE+ED,則分別求得AE、DE的長(zhǎng)即可求得AD的長(zhǎng).【詳解】過(guò)點(diǎn)B作BE⊥DA,BF⊥DC,垂足分別為E,F(xiàn),由題意知,AD⊥CD∴四邊形BFDE為矩形∴BF=ED在Rt△ABE中,AE=AB?cos∠EAB在Rt△BCF中,BF=BC?cos∠FBC∴AD=AE+BF=20?cos60°+40?cos45°=20×+40×=10+20=10+20×1.414=38.28(米).即AD=38.28米.【點(diǎn)睛】解一般三角形,求三角形的邊或高的問(wèn)題一般可以轉(zhuǎn)化為解直角三角形的問(wèn)題,解決的方法就是作高線.21、(1)證明見(jiàn)解析(2)30°(3)QM=【解析】試題分析:(1)連接OP,PB,由已知易證∠OBP=∠OPB=∠QBP,從而可得BP平分∠OBQ,結(jié)合BQ⊥CP于點(diǎn)Q,PE⊥AB于點(diǎn)E即可由角平分線的性質(zhì)得到PQ=PE;(2)如下圖2,連接OP,則由已知易得∠CPO=∠PEC=90°,由此可得∠C=∠OPE,設(shè)EF=x,則由∠GAB=30°,∠AEF=90°可得AE=,在Rt△BEF中,由tan∠BFE=可得BE=,從而可得AB=,則OP=OA=,結(jié)合AE=可得OE=,這樣即可得到sin∠OPE=,由此可得∠OPE=30°,則∠C=30°;(3)如下圖3,連接BG,過(guò)點(diǎn)O作OK⊥HB于點(diǎn)K,結(jié)合BQ⊥CP,∠OPQ=90°,可得四邊形POKQ為矩形.由此可得QK=PO,OK∥CQ從而可得∠KOB=∠C=30°;由已知易證PE=,在Rt△EPO中結(jié)合(2)可解得PO=6,由此可得OB=QK=6;在Rt△KOB中可解得KB=3,由此可得QB=9;在△ABG中由已知條件可得BG=6,∠ABG=60°;過(guò)點(diǎn)G作GN⊥QB交QB的延長(zhǎng)線于點(diǎn)N,由∠ABG=∠CBQ=60°,可得∠GBN=60°,從而可得解得GN=,BN=3,由此可得QN=12,則在Rt△BGN中可解得QG=,由∠ABG=∠CBQ=60°可知△BQG中BM是角平分線,由此可得QM:GM=QB:GB=9:6由此即可求得QM的長(zhǎng)了.試題解析:(1)如下圖1,連接OP,PB,∵CP切⊙O于P,∴OP⊥CP于點(diǎn)P,又∵BQ⊥CP于點(diǎn)Q,∴OP∥BQ,∴∠OPB=∠QBP,∵OP=OB,∴∠OPB=∠OBP,∴∠QBP=∠OBP,又∵PE⊥AB于點(diǎn)E,∴PQ=PE;(2)如下圖2,連接,∵CP切⊙O于P,∴∴∵PD⊥AB∴∴∴在Rt中,∠GAB=30°∴設(shè)EF=x,則在Rt中,tan∠BFE=3∴∴∴∴∴在RtPEO中,∴30°;(3)如下圖3,連接BG,過(guò)點(diǎn)O作于K,又BQ⊥CP,∴,∴四邊形POKQ為矩形,∴QK=PO,OK//CQ,∴30°,∵⊙O中PD⊥AB于E,PD=6,AB為⊙O的直徑,∴PE=PD=3,根據(jù)(2)得,在RtEPO中,,∴,∴OB=QK=PO=6,∴在Rt中,,∴,∴QB=9,在△ABG中,AB為⊙O的直徑,∴AGB=90°,∵BAG=30°,∴BG=6,ABG=60°,過(guò)點(diǎn)G作GN⊥QB交QB的延長(zhǎng)線于點(diǎn)N,則∠N=90°,∠GBN=180°-∠CBQ-∠ABG=60°,∴BN=BQ·cos∠GBQ=3,GN=BQ·sin∠GBQ=,∴QN=QB+BN=12,∴在Rt△QGN中,QG=,∵∠ABG=∠CBQ=60°,∴BM是△BQG的角平分線,∴QM:GM=QB:GB=9:6,∴QM=.點(diǎn)睛:解本題第3小題的要點(diǎn)是:(1)作出如圖所示的輔助線,結(jié)合已知條件和(2)先求得BQ、BG的長(zhǎng)及∠CBQ=∠ABG=60°;(2)再過(guò)點(diǎn)G作GN⊥QB并交QB的延長(zhǎng)線于點(diǎn)N,解出BN和GN的長(zhǎng),這樣即可在Rt△QGN中求得QG的長(zhǎng),最后在△BQG中“由角平分線分線段成比例定理”即可列出比例式求得QM的長(zhǎng)了.22、(1)∠CBD與∠CEB相等,證明見(jiàn)解析;(2)證明見(jiàn)解析;(3)tan∠CDF=.【解析】試題分析:(1)由AB是⊙O的直徑,BC切⊙O于點(diǎn)B,可得∠ADB=∠ABC=90°,由此可得∠A+∠ABD=∠ABD+∠CBD=90°,從而可得∠A=∠CBD,結(jié)合∠A=∠CEB即可得到∠CBD=∠CEB;(2)由∠C=∠C,∠CEB=∠CBD,可得∠EBC=∠BDC,從而可得△EBC∽△BDC,再由相似三角形的性質(zhì)即可得到結(jié)論;(3)設(shè)AB=2x,結(jié)合BC=AB,AB是直徑,可得BC=3x,OB=OD=x,再結(jié)合∠ABC=90°,可得OC=x,CD=(-1)x;由AO=DO,可得∠CDF=∠A=∠DBF,從而可得△DCF∽△BCD,由此可得:==,這樣即可得到tan∠CDF=tan∠DBF==.試題解析:(1)∠CBD與∠CEB相等,理由如下:∵BC切⊙O于點(diǎn)B,∴∠CBD=∠BAD,∵∠BAD=∠CEB,∴∠CEB=∠CBD,(2)∵∠C=∠C,∠CEB=∠CBD,∴∠EBC=∠BDC,∴△EBC∽△BDC,∴;(3)設(shè)AB=2x,∵BC=AB,AB是直徑,∴BC=3x,OB=OD=x,∵∠ABC=90°,∴OC=x,∴CD=(-1)x,∵AO=DO,∴∠CDF=∠A=∠DBF,∴△DCF∽△BCD,∴==,∵tan∠DBF==,∴tan∠CDF=.點(diǎn)睛:解答本題第3問(wèn)的要點(diǎn)是:(1)通過(guò)證∠CDF=∠A=∠DBF,把求tan∠CDF轉(zhuǎn)化為求tan∠DBF=;(2)通過(guò)證△DCF∽△BCD,得到.23、10,1.【解析】試題分析:可以設(shè)矩形豬舍垂直于住房墻一邊長(zhǎng)為m,可以得出平行于墻的一邊的長(zhǎng)為m,由題意得出方程求出邊長(zhǎng)的值.試題解析:設(shè)矩形豬舍垂直于住房墻一邊長(zhǎng)為m,可以得出平行于墻的一邊的長(zhǎng)為m,由題意得化簡(jiǎn),得,解得:當(dāng)時(shí),(舍去),當(dāng)時(shí),,答:所圍矩形豬舍的長(zhǎng)為10m、寬為1m.考點(diǎn):一元二次方程的應(yīng)用題.24、(1)CF=1;(2)y=

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論