版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學年天津市東麗區(qū)天津耀華濱海學校學業(yè)水平測試及答案注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知為圓:上任意一點,,若線段的垂直平分線交直線于點,則點的軌跡方程為()A. B.C.() D.()2.已知等差數(shù)列的公差不為零,且,,構(gòu)成新的等差數(shù)列,為的前項和,若存在使得,則()A.10 B.11 C.12 D.133.在邊長為的菱形中,,沿對角線折成二面角為的四面體(如圖),則此四面體的外接球表面積為()A. B.C. D.4.寧波古圣王陽明的《傳習錄》專門講過易經(jīng)八卦圖,下圖是易經(jīng)八卦圖(含乾、坤、巽、震、坎、離、艮、兌八卦),每一卦由三根線組成(“—”表示一根陽線,“——”表示一根陰線).從八卦中任取兩卦,這兩卦的六根線中恰有四根陰線的概率為()A. B. C. D.5.某部隊在一次軍演中要先后執(zhí)行六項不同的任務(wù),要求是:任務(wù)A必須排在前三項執(zhí)行,且執(zhí)行任務(wù)A之后需立即執(zhí)行任務(wù)E,任務(wù)B、任務(wù)C不能相鄰,則不同的執(zhí)行方案共有()A.36種 B.44種 C.48種 D.54種6.設(shè)等比數(shù)列的前項和為,則“”是“”的()A.充分不必要 B.必要不充分C.充要 D.既不充分也不必要7.已知集合,,若,則()A. B. C. D.8.1777年,法國科學家蒲豐在宴請客人時,在地上鋪了一張白紙,上面畫著一條條等距離的平行線,而他給每個客人發(fā)許多等質(zhì)量的,長度等于相鄰兩平行線距離的一半的針,讓他們隨意投放.事后,蒲豐對針落地的位置進行統(tǒng)計,發(fā)現(xiàn)共投針2212枚,與直線相交的有704枚.根據(jù)這次統(tǒng)計數(shù)據(jù),若客人隨意向這張白紙上投放一根這樣的針,則針落地后與直線相交的概率約為()A. B. C. D.9.設(shè)全集,集合,.則集合等于()A. B. C. D.10.函數(shù)的大致圖像為()A. B.C. D.11.已知函數(shù),其中,若恒成立,則函數(shù)的單調(diào)遞增區(qū)間為()A. B.C. D.12.如圖所示,直三棱柱的高為4,底面邊長分別是5,12,13,當球與上底面三條棱都相切時球心到下底面距離為8,則球的體積為()A.1605π3 B.642二、填空題:本題共4小題,每小題5分,共20分。13.在中,內(nèi)角的對邊分別是,若,,則____.14.有以下四個命題:①在中,的充要條件是;②函數(shù)在區(qū)間上存在零點的充要條件是;③對于函數(shù),若,則必不是奇函數(shù);④函數(shù)與的圖象關(guān)于直線對稱.其中正確命題的序號為______.15.若、滿足約束條件,則的最小值為______.16.若函數(shù)為自然對數(shù)的底數(shù))在和兩處取得極值,且,則實數(shù)的取值范圍是______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)橢圓:的左、右焦點分別為,,下頂點為,橢圓的離心率是,的面積是.(1)求橢圓的標準方程.(2)直線與橢圓交于,兩點(異于點),若直線與直線的斜率之和為1,證明:直線恒過定點,并求出該定點的坐標.18.(12分)已知函數(shù),(Ⅰ)當時,證明;(Ⅱ)已知點,點,設(shè)函數(shù),當時,試判斷的零點個數(shù).19.(12分)已知拋物線的焦點也是橢圓的一個焦點,與的公共弦的長為.(1)求的方程;(2)過點的直線與相交于、兩點,與相交于、兩點,且與同向,設(shè)在點處的切線與軸的交點為,證明:直線繞點旋轉(zhuǎn)時,總是鈍角三角形;(3)為上的動點,、為長軸的兩個端點,過點作的平行線交橢圓于點,過點作的平行線交橢圓于點,請問的面積是否為定值,并說明理由.20.(12分)設(shè)函數(shù).(1)若,求函數(shù)的值域;(2)設(shè)為的三個內(nèi)角,若,求的值;21.(12分)已知如圖1,在Rt△ABC中,∠ACB=30°,∠ABC=90°,D為AC中點,AEBD于E,延長AE交BC于F,將△ABD沿BD折起,使平面ABD平面BCD,如圖2所示。(Ⅰ)求證:AE平面BCD;(Ⅱ)求二面角A-DC-B的余弦值;(Ⅲ)求三棱錐B-AEF與四棱錐A-FEDC的體積的比(只需寫出結(jié)果,不要求過程).22.(10分)如圖,在三棱錐中,,是的中點,點在上,平面,平面平面,為銳角三角形,求證:(1)是的中點;(2)平面平面.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】
如圖所示:連接,根據(jù)垂直平分線知,,故軌跡為雙曲線,計算得到答案.【詳解】如圖所示:連接,根據(jù)垂直平分線知,故,故軌跡為雙曲線,,,,故,故軌跡方程為.故選:.【點睛】本題考查了軌跡方程,確定軌跡方程為雙曲線是解題的關(guān)鍵.2.D【解析】
利用等差數(shù)列的通項公式可得,再利用等差數(shù)列的前項和公式即可求解.【詳解】由,,構(gòu)成等差數(shù)列可得即又解得:又所以時,.故選:D【點睛】本題考查了等差數(shù)列的通項公式、等差數(shù)列的前項和公式,需熟記公式,屬于基礎(chǔ)題.3.A【解析】
畫圖取的中點M,法一:四邊形的外接圓直徑為OM,即可求半徑從而求外接球表面積;法二:根據(jù),即可求半徑從而求外接球表面積;法三:作出的外接圓直徑,求出和,即可求半徑從而求外接球表面積;【詳解】如圖,取的中點M,和的外接圓半徑為,和的外心,到弦的距離(弦心距)為.法一:四邊形的外接圓直徑,,;法二:,,;法三:作出的外接圓直徑,則,,,,,,,,,.故選:A【點睛】此題考查三棱錐的外接球表面積,關(guān)鍵點是通過幾何關(guān)系求得球心位置和球半徑,方法較多,屬于較易題目.4.B【解析】
根據(jù)古典概型的概率求法,先得到從八卦中任取兩卦基本事件的總數(shù),再找出這兩卦的六根線中恰有四根陰線的基本事件數(shù),代入公式求解.【詳解】從八卦中任取兩卦基本事件的總數(shù)種,這兩卦的六根線中恰有四根陰線的基本事件數(shù)有6種,分別是(巽,坤),(兌,坤),(離,坤),(震,艮),(震,坎),(坎,艮),所以這兩卦的六根線中恰有四根陰線的概率是.故選:B【點睛】本題主要考查古典概型的概率,還考查了運算求解的能力,屬于基礎(chǔ)題.5.B【解析】
分三種情況,任務(wù)A排在第一位時,E排在第二位;任務(wù)A排在第二位時,E排在第三位;任務(wù)A排在第三位時,E排在第四位,結(jié)合任務(wù)B和C不能相鄰,分別求出三種情況的排列方法,即可得到答案.【詳解】六項不同的任務(wù)分別為A、B、C、D、E、F,如果任務(wù)A排在第一位時,E排在第二位,剩下四個位置,先排好D、F,再在D、F之間的3個空位中插入B、C,此時共有排列方法:;如果任務(wù)A排在第二位時,E排在第三位,則B,C可能分別在A、E的兩側(cè),排列方法有,可能都在A、E的右側(cè),排列方法有;如果任務(wù)A排在第三位時,E排在第四位,則B,C分別在A、E的兩側(cè);所以不同的執(zhí)行方案共有種.【點睛】本題考查了排列組合問題,考查了學生的邏輯推理能力,屬于中檔題.6.A【解析】
首先根據(jù)等比數(shù)列分別求出滿足,的基本量,根據(jù)基本量的范圍即可確定答案.【詳解】為等比數(shù)列,若成立,有,因為恒成立,故可以推出且,若成立,當時,有,當時,有,因為恒成立,所以有,故可以推出,,所以“”是“”的充分不必要條件.故選:A.【點睛】本題主要考查了等比數(shù)列基本量的求解,充分必要條件的集合關(guān)系,屬于基礎(chǔ)題.7.A【解析】
由,得,代入集合B即可得.【詳解】,,,即:,故選:A【點睛】本題考查了集合交集的含義,也考查了元素與集合的關(guān)系,屬于基礎(chǔ)題.8.D【解析】
根據(jù)統(tǒng)計數(shù)據(jù),求出頻率,用以估計概率.【詳解】.故選:D.【點睛】本題以數(shù)學文化為背景,考查利用頻率估計概率,屬于基礎(chǔ)題.9.A【解析】
先算出集合,再與集合B求交集即可.【詳解】因為或.所以,又因為.所以.故選:A.【點睛】本題考查集合間的基本運算,涉及到解一元二次不等式、指數(shù)不等式,是一道容易題.10.D【解析】
通過取特殊值逐項排除即可得到正確結(jié)果.【詳解】函數(shù)的定義域為,當時,,排除B和C;當時,,排除A.故選:D.【點睛】本題考查圖象的判斷,取特殊值排除選項是基本手段,屬中檔題.11.A【解析】
,從而可得,,再解不等式即可.【詳解】由已知,,所以,,由,解得,.故選:A.【點睛】本題考查求正弦型函數(shù)的單調(diào)區(qū)間,涉及到恒成立問題,考查學生轉(zhuǎn)化與化歸的思想,是一道中檔題.12.A【解析】
設(shè)球心為O,三棱柱的上底面ΔA1B1C1的內(nèi)切圓的圓心為O1,該圓與邊B【詳解】如圖,設(shè)三棱柱為ABC-A1B1C所以底面ΔA1B1C1為斜邊是A1C1則圓O1的半徑為O設(shè)球心為O,則由球的幾何知識得ΔOO1M所以O(shè)M=2即球O的半徑為25所以球O的體積為43故選A.【點睛】本題考查與球有關(guān)的組合體的問題,解答本題的關(guān)鍵有兩個:(1)構(gòu)造以球半徑R、球心到小圓圓心的距離d和小圓半徑r為三邊的直角三角形,并在此三角形內(nèi)求出球的半徑,這是解決與球有關(guān)的問題時常用的方法.(2)若直角三角形的兩直角邊為a,b,斜邊為c,則該直角三角形內(nèi)切圓的半徑r=a+b-c二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
由,根據(jù)正弦定理“邊化角”,可得,根據(jù)余弦定理,結(jié)合已知聯(lián)立方程組,即可求得角.【詳解】根據(jù)正弦定理:可得根據(jù)余弦定理:由已知可得:故可聯(lián)立方程:解得:.由故答案為:.【點睛】本題主要考查了求三角形的一個內(nèi)角,解題關(guān)鍵是掌握由正弦定理“邊化角”的方法和余弦定理公式,考查了分析能力和計算能力,屬于中檔題.14.①【解析】
由三角形的正弦定理和邊角關(guān)系可判斷①;由零點存在定理和二次函數(shù)的圖象可判斷②;由,結(jié)合奇函數(shù)的定義,可判斷③;由函數(shù)圖象對稱的特點可判斷④.【詳解】解:①在中,,故①正確;②函數(shù)在區(qū)間上存在零點,比如在存在零點,但是,故②錯誤;③對于函數(shù),若,滿足,但可能為奇函數(shù),故③錯誤;④函數(shù)與的圖象,可令,即,即有和的圖象關(guān)于直線對稱,即對稱,故④錯誤.故答案為:①.【點睛】本題主要考查函數(shù)的零點存在定理和對稱性、奇偶性的判斷,考查判斷能力和推理能力,屬于中檔題.15.【解析】
作出不等式組所表示的可行域,利用平移直線的方法找出使得目標函數(shù)取得最小時對應(yīng)的最優(yōu)解,代入目標函數(shù)計算即可.【詳解】作出不等式組所表示的可行域如下圖所示:聯(lián)立,解得,即點,平移直線,當直線經(jīng)過可行域的頂點時,該直線在軸上的截距最小,此時取最小值,即.故答案為:.【點睛】本題考查簡單的線性規(guī)劃問題,考查線性目標函數(shù)的最值問題,考查數(shù)形結(jié)合思想的應(yīng)用,屬于基礎(chǔ)題.16.【解析】
先將函數(shù)在和兩處取得極值,轉(zhuǎn)化為方程有兩不等實根,且,再令,將問題轉(zhuǎn)化為直線與曲線有兩交點,且橫坐標滿足,用導數(shù)方法研究單調(diào)性,作出簡圖,求出時,的值,進而可得出結(jié)果.【詳解】因為,所以,又函數(shù)在和兩處取得極值,所以是方程的兩不等實根,且,即有兩不等實根,且,令,則直線與曲線有兩交點,且交點橫坐標滿足,又,由得,所以,當時,,即函數(shù)在上單調(diào)遞增;當,時,,即函數(shù)在和上單調(diào)遞減;當時,由得,此時,因此,由得.故答案為【點睛】本題主要考查導數(shù)的應(yīng)用,已知函數(shù)極值點間的關(guān)系求參數(shù)的問題,通常需要將函數(shù)極值點,轉(zhuǎn)化為導函數(shù)對應(yīng)方程的根,再轉(zhuǎn)化為直線與曲線交點的問題來處理,屬于常考題型.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1);(2)證明見解析,.【解析】
(1)根據(jù)離心率和的面積是得到方程組,計算得到答案.(2)先排除斜率為0時的情況,設(shè),,聯(lián)立方程組利用韋達定理得到,,根據(jù)化簡得到,代入直線方程得到答案.【詳解】(1)由題意可得,解得,,則橢圓的標準方程是.(2)當直線的斜率為0時,直線與直線關(guān)于軸對稱,則直線與直線的斜率之和為零,與題設(shè)條件矛盾,故直線的斜率不為0.設(shè),,直線的方程為聯(lián)立,整理得則,.因為直線與直線的斜率之和為1,所以,所以,將,代入上式,整理得.所以,即,則直線的方程為.故直線恒過定點.【點睛】本題考查了橢圓的標準方程,直線過定點問題,計算出是解題的關(guān)鍵,意在考查學生的計算能力和轉(zhuǎn)化能力.18.(Ⅰ)詳見解析;(Ⅱ)1.【解析】
(Ⅰ)令,;則.易得,.即可證明;(Ⅱ),分①,②,③當時,討論的零點個數(shù)即可.【詳解】解:(Ⅰ)令,;則.令,,易得在遞減,在遞增,∴,∴在恒成立.∵在遞減,在遞增.∴.∵;(Ⅱ)∵點,點,∴,.①當時,可知,∴∴,,∴.∴在單調(diào)遞增,,.∴在上有一個零點,②當時,,,∴,∴在恒成立,∴在無零點.③當時,,.∴在單調(diào)遞減,,.∴在存在一個零點.綜上,的零點個數(shù)為1..【點睛】本題考查了利用導數(shù)解決函數(shù)零點問題,考查了分類討論思想,屬于壓軸題.19.(1);(2)證明見解析;(3)是,理由見解析.【解析】
(1)根據(jù)兩個曲線的焦點相同,得到,再根據(jù)與的公共弦長為得出,可求出和的值,進而可得出曲線的方程;(2)設(shè)點,根據(jù)導數(shù)的幾何意義得到曲線在點處的切線方程,求出點的坐標,利用向量的數(shù)量積得出,則問題得以證明;(3)設(shè)直線,直線,、、,推導出以及,求出和,通過化簡計算可得出為定值,進而可得出結(jié)論.【詳解】(1)由知其焦點的坐標為,也是橢圓的一個焦點,,①又與的公共弦的長為,與都關(guān)于軸對稱,且的方程為,由此易知與的公共點的坐標為,,②聯(lián)立①②,得,,故的方程為;(2)如圖,,由得,在點處的切線方程為,即,令,得,即,,而,于是,因此是銳角,從而是鈍角.故直線繞點旋轉(zhuǎn)時,總是鈍角三角形;(3)設(shè)直線,直線,、、,則,設(shè)向量和的夾角為,則的面積為,由,可得,同理可得,故有.又,故,則,因此,的面積為定值.【點睛】本題考查了圓錐曲線的和直線的位置與關(guān)系,考查鈍角三角形的判定以及三角形面積為定值的求解,關(guān)鍵是聯(lián)立方程,構(gòu)造方程,利用韋達定理,以及向量的關(guān)系,得到關(guān)于斜率的方程,計算量大,屬于難題.20.(1)(2)【解析】
(1)將,利用三角恒等變換轉(zhuǎn)化為:,,再根據(jù)正弦函數(shù)的性質(zhì)求解,(2)根據(jù),得,又為的內(nèi)角,得到,再根據(jù),利用兩角和與差的余弦公式求解,【詳解】(1),,,,即的值域為;(2)由,得,又為的內(nèi)角,所以,又因為在中,,所以,所以.【點睛】本題主要考查三角恒等變換和三角函數(shù)的性質(zhì),還考查了運算求解的能力,屬于中檔題,21.(Ⅰ)證明見解析;(Ⅱ);(Ⅲ)1:5【解析】
(Ⅰ)由平面ABD⊥平面BCD,交線為BD,AE⊥BD于E,能證明AE⊥平面BCD;(Ⅱ)以E為坐標原點,分別以EF、ED、EA所在直線為x軸,y軸,z軸,建立空間直角坐標系E-xyz,利用向量法求出二面角A-DC-B的余弦值;(Ⅲ)利用體積公式分別求
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年新版填土工程安全協(xié)議書范本3篇
- 2025年送氣工解雇經(jīng)濟補償協(xié)議3篇
- 二零二五年度不銹鋼門窗制作與安裝服務(wù)合同2篇
- 2025年度煤礦公司員工勞動合同解除及補償協(xié)議4篇
- 二零二五年度管件行業(yè)智能制造與工業(yè)互聯(lián)網(wǎng)應(yīng)用合同3篇
- 2025年水土保持設(shè)施驗收技術(shù)服務(wù)及后續(xù)監(jiān)管合同3篇
- 二零二五年螺旋鋼管倉儲物流服務(wù)合作協(xié)議4篇
- 二零二五年度能源項目融資合同4篇
- 二零二五年度標識牌行業(yè)標準制定與合作合同3篇
- 二零二五年度水產(chǎn)養(yǎng)殖用水電供應(yīng)合同2篇
- 2024年石家莊正定國際機場改擴建工程合同
- 2025年度愛讀書學長定制化閱讀計劃合同2篇
- 江西省港口集團有限公司招聘筆試沖刺題2025
- 河南省信陽市浉河區(qū)9校聯(lián)考2024-2025學年八年級上學期12月月考地理試題(含答案)
- 快速康復在骨科護理中的應(yīng)用
- 國民經(jīng)濟行業(yè)分類和代碼表(電子版)
- ICU患者外出檢查的護理
- 公司收購設(shè)備合同范例
- GB/T 44823-2024綠色礦山評價通則
- 廣東省潮州市2023-2024學年高二上學期語文期末考試試卷(含答案)
- 2024年光伏發(fā)電項目EPC總包合同
評論
0/150
提交評論