江蘇省揚州市揚州中學(xué)2025屆數(shù)學(xué)高二上期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第1頁
江蘇省揚州市揚州中學(xué)2025屆數(shù)學(xué)高二上期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第2頁
江蘇省揚州市揚州中學(xué)2025屆數(shù)學(xué)高二上期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第3頁
江蘇省揚州市揚州中學(xué)2025屆數(shù)學(xué)高二上期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第4頁
江蘇省揚州市揚州中學(xué)2025屆數(shù)學(xué)高二上期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

江蘇省揚州市揚州中學(xué)2025屆數(shù)學(xué)高二上期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,若,則()A. B.2C. D.e2.為了調(diào)查修水縣2019年高考數(shù)學(xué)成績,在高考后對我縣6000名考生進行了抽樣調(diào)查,其中2000名文科考生,3800名理科考生,200名藝術(shù)和體育類考生,從中抽到了120名考生的數(shù)學(xué)成績作為一個樣本,這項調(diào)查宜采用的抽樣方法是()A.系統(tǒng)抽樣法 B.分層抽樣法C.抽簽法 D.簡單的隨機抽樣法3.下列直線中,傾斜角為銳角的是()A. B.C. D.4.等比數(shù)列的各項均為正數(shù),已知向量,,且,則A.12 B.10C.5 D.5.已知,記M到x軸的距離為a,到y(tǒng)軸的距離為b,到z軸的距離為c,則()A. B.C. D.6.漸近線方程為的雙曲線的離心率是()A.1 B.C. D.27.過點作圓的切線,則切線的方程為()A. B.C.或 D.或8.已知直線與直線平行,則實數(shù)a的值為()A.1 B.C.1或 D.9.已知雙曲線的離心率,點是拋物線上的一動點,到雙曲線的上焦點的距離與到直線的距離之和的最小值為,則該雙曲線的方程為A. B.C. D.10.如圖給出的是一道典型的數(shù)學(xué)無字證明問題:各矩形塊中填寫的數(shù)字構(gòu)成一個無窮數(shù)列,所有數(shù)字之和等于1.按照圖示規(guī)律,有同學(xué)提出了以下結(jié)論,其中正確的是()A.由大到小的第八個矩形塊中應(yīng)填寫的數(shù)字為B.前七個矩形塊中所填寫的數(shù)字之和等于C.矩形塊中所填數(shù)字構(gòu)成的是以1為首項,為公比的等比數(shù)列D.按照這個規(guī)律繼續(xù)下去,第n-1個矩形塊中所填數(shù)字是11.將的展開式按x的降冪排列,第二項不大于第三項,若,且,則實數(shù)x的取值范圍是()A. B.C. D.12.已知橢圓+=1(a>b>0)的右焦點為F(3,0),過點F的直線交橢圓于A、B兩點.若AB的中點坐標為(1,-1),則E的方程為A.+=1 B.+=1C.+=1 D.+=1二、填空題:本題共4小題,每小題5分,共20分。13.已知雙曲線:,,是其左右焦點.圓:,點為雙曲線右支上的動點,點為圓上的動點,則的最小值是________.14.某班名學(xué)生期中考試數(shù)學(xué)成績的頻率分布直方圖如圖所示.根據(jù)頻率分布直方圖,估計該班本次測試平均分為______15.已知橢圓,分別是橢圓的上、下頂點,是左頂點,為左焦點,直線與相交于點,則________16.若展開式的二項式系數(shù)之和是64,則展開式中的常數(shù)項的值是__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)求適合下列條件的橢圓的標準方程:(1)經(jīng)過點,;(2)長軸長是短軸長的3倍,且經(jīng)過點18.(12分)在四棱錐中,平面,底面是邊長為2的菱形,分別為的中點.(1)證明:平面;(2)求三棱錐的體積.19.(12分)如圖,在三棱錐A-BCD中,O為線段BD中點,是邊長為1正三角形,且OA⊥BC,AB=AD(1)證明:平面ABD⊥平面BCD;(2)若|OA|=1,,求平面BCE與平面BCD的夾角的余弦值20.(12分)已知拋物線的焦點為F,點在拋物線上,且在第一象限,的面積為(O為坐標原點).(1)求拋物線的標準方程;(2)經(jīng)過點的直線與交于,兩點,且,異于點,若直線與的斜率存在且不為零,證明:直線與的斜率之積為定值.21.(12分)已知函數(shù)是定義在實數(shù)集上的奇函數(shù),且當(dāng)時,(1)求的解析式;(2)若在上恒成立,求的取值范圍22.(10分)已知函數(shù).(I)當(dāng)時,求曲線在處的切線方程;(Ⅱ)若當(dāng)時,,求的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】求得導(dǎo)函數(shù),則,計算即可得出結(jié)果.【詳解】,.,解得:.故選:B2、B【解析】考生分為幾個不同的類型或?qū)哟危纱丝梢源_定抽樣方法;【詳解】6000名考生進行抽樣調(diào)查,其中2000名文科考生,3800名理科考生,200名藝術(shù)和體育類考生,從中抽到了120名考生的數(shù)學(xué)成績作為一個樣本又文科考生、理科考生、藝術(shù)和體育類考生會存在差異,采用分層抽樣法較好故選:B.【點睛】本題主要考查的是分層抽樣,掌握分層抽樣的有關(guān)知識是解題的關(guān)鍵,屬于基礎(chǔ)題.3、A【解析】先由直線方程找到直線的斜率,再推導(dǎo)出直線的傾斜角即可.【詳解】選項A:直線的斜率,則直線傾斜角為,是銳角,判斷正確;選項B:直線的斜率,則直線傾斜角為鈍角,判斷錯誤;選項C:直線的斜率,則直線傾斜角為0,不是銳角,判斷錯誤;選項D:直線沒有斜率,傾斜角為直角,不是銳角,判斷錯誤.故選:A4、C【解析】利用數(shù)量積運算性質(zhì)、等比數(shù)列的性質(zhì)及其對數(shù)運算性質(zhì)即可得出【詳解】向量=(,),=(,),且?=4,∴+=4,由等比數(shù)列的性質(zhì)可得:=……===2,則log2(?)=故選C【點睛】本題考查數(shù)量積運算性質(zhì)、等比數(shù)列的性質(zhì)及其對數(shù)運算性質(zhì),考查推理能力與計算能力,屬于中檔題5、C【解析】分別求出點M在x軸,y軸,z軸上的投影點的坐標,再借助空間兩點間距離公式計算作答.【詳解】設(shè)點M在x軸上的投影點,則,而x軸的方向向量,由得:,解得,則,設(shè)點M在y軸上的投影點,則,而y軸的方向向量,由得:,解得,則,設(shè)點M在z軸上的投影點,則,而z軸的方向向量,由得:,解得,則,所以.故選:C6、B【解析】根據(jù)雙曲線漸近線方程可確定a,b的關(guān)系,進而求得離心率.【詳解】因為雙曲線近線方程為,故雙曲線為等軸雙曲線,則a=b,故離心率為,則,故選:B.7、C【解析】設(shè)切線的方程為,然后利用圓心到直線的距離等于半徑建立方程求解即可.【詳解】圓的圓心為原點,半徑為1,當(dāng)切線的斜率不存在時,即直線的方程為,不與圓相切,當(dāng)切線的斜率存在時,設(shè)切線的方程為,即所以,解得或所以切線的方程為或故選:C8、A【解析】根據(jù)兩直線平行的條件列方程,化簡求得,檢驗后確定正確答案.【詳解】由于直線與直線平行,所以,或,當(dāng)時,兩直線方程都為,即兩直線重合,所以不符合題意.經(jīng)檢驗可知符合題意.故選:A9、B【解析】先根據(jù)離心率得,再根據(jù)拋物線定義得最小值為(為拋物線焦點),解得,即得結(jié)果.【詳解】因為雙曲線的離心率,所以,設(shè)為拋物線焦點,則,拋物線準線方程為,因此到雙曲線的上焦點的距離與到直線的距離之和等于,因為,所以,即,即雙曲線的方程為,選B.【點睛】本題考查雙曲線方程、離心率以及拋物線定義,考查基本分析求解能力,屬中檔題.10、B【解析】根據(jù)題意可得矩形塊中的數(shù)字從大到小形成等比數(shù)列,根據(jù)等比數(shù)列的通項公式可求.【詳解】設(shè)每個矩形塊中的數(shù)字從大到小形成數(shù)列,則可得是首項為,公比為的等比數(shù)列,,所以由大到小的第八個矩形塊中應(yīng)填寫的數(shù)字為,故A錯誤;前七個矩形塊中所填寫的數(shù)字之和等于,故B正確;矩形塊中所填數(shù)字構(gòu)成的是以為首項,為公比的等比數(shù)列,故C錯誤;按照這個規(guī)律繼續(xù)下去,第個矩形塊中所填數(shù)字是,故D錯誤.故選:B.11、A【解析】按照二項展開式展開表示出第二項第三項,解不等式即可.【詳解】由二項展開式,第二項為:,第三項為:,依題意,兩邊約去得到,即,由知,則,同時約去得到.故選:A.12、D【解析】設(shè)、,所以,運用點差法,所以直線的斜率為,設(shè)直線方程為,聯(lián)立直線與橢圓的方程,所以;又因為,解得.【考點定位】本題考查直線與圓錐曲線的關(guān)系,考查學(xué)生的化歸與轉(zhuǎn)化能力.二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】利用雙曲線定義,將的最小值問題轉(zhuǎn)化為的最小值問題,然后結(jié)合圖形可解.【詳解】由題設(shè)知,,,,圓的半徑由點為雙曲線右支上的動點知∴∴.故答案為:14、【解析】將每個矩形底邊的中點值乘以對應(yīng)矩形的面積,即可得解.【詳解】由頻率分布直方圖可知,該班本次測試平均分為.故答案為:.15、##【解析】先求出頂點和焦點坐標,求出直線直線與的斜率,利用到角公式求出的正切值,進而求出正弦值.【詳解】由可得:,所以,,,,故,由到角公式得:,其中,所以.故答案為:16、【解析】首先利用展開式的二項式系數(shù)和是求出,然后即可求出二項式的常數(shù)項.【詳解】由題知展開式的二項式系數(shù)之和是,故有,可得,知當(dāng)時有.故展開式中的常數(shù)項為.故答案為:.【點睛】本題考查了利用二項式的系數(shù)和求參數(shù),求二項式的常數(shù)項,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)或.【解析】(1)由已知可得,,且焦點在軸上,進而可得橢圓的標準方程;(2)由已知可得,,此時焦點在軸上,或,,此時焦點在軸上,進而可得橢圓的標準方程;【小問1詳解】解:橢圓經(jīng)過點,,,,,且焦點在軸上,橢圓的標準方程為.【小問2詳解】解:長軸長是短軸長的3倍,且經(jīng)過點,當(dāng)點在長軸上時,,,此時焦點在軸上,此時橢圓的標準方程為;當(dāng)點在短軸上時,,,此時焦點在軸上,此時橢圓的標準方程.綜合得橢圓的方程為或.18、(1)證明見解析(2)【解析】(1)取的中點,利用三角形中位線定理可證明BG//EF,由線線平行,可得線面平行;(2根據(jù)圖像可得,以為底面,證明為高,利用三棱錐的體積公式,可得答案;【小問1詳解】取的中點,因為為的中點,所以且,又因為為的中點,四邊形為菱形,所以且,所以且,故四邊形BFEG為平行四邊形,所以BG//EF,因為面面,所以面.【小問2詳解】因為底面是邊長為2的菱形,,則為正三角形,所以因為面,所以為三棱錐的高所以三棱錐的體積.19、(1)證明見解析(2)【解析】(1)由題意可得OA⊥平面BCD,從而可證明.(2)作OF⊥BD交BC于點F,如圖,以O(shè)為坐標原點,分別以O(shè)F,OD,OA所在直線軸建立空間直角坐標系,利用向量法可求解.【小問1詳解】因為AB=AD,O為BD中點,所以O(shè)A⊥BD因為OA⊥BC,且BD,BC平面BCD,BD∩BC=B,所以O(shè)A⊥平面BCD又因為OA平面ABD,所以平面ABD⊥平面BCD【小問2詳解】作OF⊥BD交BC于點F,如圖,以O(shè)為坐標原點,分別以O(shè)F,OD,OA所在直線軸建立空間直角坐標系因為三角形OCD為邊長為1的正三角形,且OA=OB=1,DE=2AE所以A(0,0,1),B(0,-1,0),設(shè)平面EBC的法向量為=()因為⊥BE,⊥BC,所以令,則,,所以已知平面BCD的法向量所以所以平面EBC與平面BCD的夾角的余弦值為20、(1);(2)證明見解析.【解析】(1)由題可得,然后結(jié)合面積公式可得,即求;(2)通過分類討論,利用韋達定理法結(jié)合斜率公式計算即得.【小問1詳解】因為點拋物線上,所以,,,因為,故解得,拋物線方程為;【小問2詳解】當(dāng)直線的斜率不存在時,直線為,得,.,,則.當(dāng)直線的斜率存在時,設(shè)直線為,設(shè),,聯(lián)立得:因為,所以,.所以,所以直線與的斜率之積為定值.21、(1),(2)實數(shù)的取值范圍是【解析】(1)根據(jù)函數(shù)奇偶性求解析式;(2)將恒成立轉(zhuǎn)化為令,恒成立,討論二次函數(shù)系數(shù),結(jié)合根的分布.【詳解】解:(1)因為函數(shù)是定義在實數(shù)集上的奇函數(shù),所以,當(dāng)時,則所以當(dāng)時所以(2)因為時,在上恒成立等價于即在上恒成立令,則①當(dāng)時,不恒成立,故舍去②當(dāng)時必有,此時對稱軸若即或時,恒成立因為,所以若即時,要使恒成立則有與矛盾,故舍去綜上,實數(shù)的取值范圍是【點睛】應(yīng)用函數(shù)奇偶性可解決的四類問題及解題方法(1)求函數(shù)值:將待求值利用奇偶性轉(zhuǎn)化為已知區(qū)間上的函數(shù)值求解;(2)求解析式:先將待求區(qū)間上的自變量轉(zhuǎn)化到已知區(qū)間上,再利用奇偶性求解,或充分利用奇偶性構(gòu)造關(guān)于的方程(組),從而得到的解析式;(3)求函數(shù)解析式中參數(shù)的值:利用待定系數(shù)法求解,根據(jù)得到關(guān)于待求參數(shù)的恒等式,由系數(shù)的對等性得參數(shù)的值或方程(組),進而得出參數(shù)的值;(4)畫函數(shù)圖象和判斷單調(diào)性:利用奇偶性可畫出另一對稱區(qū)間上的圖象及判斷另一區(qū)間上的單調(diào)性.22、(1)(2)【解析】(Ⅰ)先求的定義域,再求,,,由直線方程的點斜

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論