版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
江西省宜黃市一中2025屆數(shù)學(xué)高二上期末考試試題注意事項(xiàng)1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù)是區(qū)間上的可導(dǎo)函數(shù),且導(dǎo)函數(shù)為,則“對任意的,”是“在上為增函數(shù)”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件2.已知,,2成等差數(shù)列,則在平面直角坐標(biāo)系中,點(diǎn)M(x,y)的軌跡為()A. B.C. D.3.已知為橢圓的兩個(gè)焦點(diǎn),過的直線交橢圓于兩點(diǎn),若,則()A. B.C. D.4.已知,,若,則實(shí)數(shù)的值為()A. B.C. D.25.已知圓的方程為,直線:恒過定點(diǎn),若一條光線從點(diǎn)射出,經(jīng)直線上一點(diǎn)反射后到達(dá)圓上的一點(diǎn),則的最小值是()A.3 B.4C.5 D.66.函數(shù)的最小值是()A.2 B.4C.5 D.67.正方體中,E、F分別是與的中點(diǎn),則直線ED與所成角的余弦值是()A. B.C. D.8.定義在R上的函數(shù)與函數(shù)在上具有相同的單調(diào)性,則k的取值范圍是()A. B.C. D.9.中國古代數(shù)學(xué)名著九章算術(shù)中有這樣一個(gè)問題:今有牛、馬、羊食人苗,苗主責(zé)之栗五斗羊主曰:“我羊食半馬”馬主曰:“我馬食半?!苯裼斨?,問各出幾何?此問題的譯文是:今有牛、馬、羊吃了別人的禾苗,禾苗的主人要求賠償5斗栗羊主人說:“我羊所吃的禾苗只有馬的一半”馬主人說:“我馬所吃的禾苗只有牛的一半”打算按此比率償還,他們各應(yīng)償還多少?已知牛、馬、羊的主人各應(yīng)償還栗a升,b升,c升,1斗為10升,則下列判斷正確的是A.a,b,c依次成公比為2的等比數(shù)列,且B.a,b,c依次成公比為2的等比數(shù)列,且C.a,b,c依次成公比為的等比數(shù)列,且D.a,b,c依次成公比為的等比數(shù)列,且10.已知橢圓與雙曲線有相同的焦點(diǎn)、,橢圓的離心率為,雙曲線的離心率為,點(diǎn)P為橢圓與雙曲線的交點(diǎn),且,則當(dāng)取最大值時(shí)的值為()A. B.C. D.11.德國數(shù)學(xué)家萊布尼茨是微積分的創(chuàng)立者之一,他從幾何問題出發(fā),引進(jìn)微積分概念.在研究切線時(shí)認(rèn)識到,求曲線的切線的斜率依賴于縱坐標(biāo)的差值和橫坐標(biāo)的差值,以及當(dāng)此差值變成無限小時(shí)它們的比值,這也正是導(dǎo)數(shù)的幾何意義.設(shè)是函數(shù)f(x)的導(dǎo)函數(shù),若,對,且.總有,則下列選項(xiàng)正確的是()A. B.C. D.12.設(shè)點(diǎn)關(guān)于坐標(biāo)原點(diǎn)的對稱點(diǎn)是B,則等于()A.4 B.C. D.2二、填空題:本題共4小題,每小題5分,共20分。13.若圓心坐標(biāo)為圓被直線截得的弦長為,則圓的半徑為______.14.已知函數(shù),若,則________.15.已知焦點(diǎn)在軸上的雙曲線,其漸近線方程為,焦距為,則該雙曲線的標(biāo)準(zhǔn)方程為________16.已知拋物線:上有兩動點(diǎn),,且,則線段的中點(diǎn)到軸距離的最小值是___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的一個(gè)焦點(diǎn)與拋物線的焦點(diǎn)重合,橢圓上的動點(diǎn)到焦點(diǎn)的最大距離為.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)過作一條不與坐標(biāo)軸垂直的直線交橢圓于兩點(diǎn),弦的中垂線交軸于,當(dāng)變化時(shí),是否為定值?若是,定值為多少?18.(12分)某中學(xué)共有名學(xué)生,其中高一年級有名學(xué)生,為了解學(xué)生的睡眠情況,用分層抽樣的方法,在三個(gè)年級中抽取了名學(xué)生,依據(jù)每名學(xué)生的睡眠時(shí)間(單位:小時(shí)),繪制出了如圖所示的頻率分布直方圖.(1)求樣本中高一年級學(xué)生的人數(shù)及圖中的值;(2)估計(jì)樣本數(shù)據(jù)的中位數(shù)(保留兩位小數(shù));(3)估計(jì)全校睡眠時(shí)間超過個(gè)小時(shí)的學(xué)生人數(shù).19.(12分)在如圖所示的幾何體中,四邊形是平行四邊形,,,,四邊形是矩形,且平面平面,,點(diǎn)是線段上的動點(diǎn)(1)證明:;(2)設(shè)平面與平面的夾角為,求的最小值20.(12分)已知數(shù)列是公差為2的等差數(shù)列,且滿足,,成等比數(shù)列(1)求數(shù)列的通項(xiàng)公式;(2)求數(shù)列的前n項(xiàng)和21.(12分)已知數(shù)列是首項(xiàng)為1,公差不為0的等差數(shù)列,且成等比數(shù)列.數(shù)列的前項(xiàng)的和為,且滿足.(1)求數(shù)列的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和.22.(10分)如圖,已知橢圓:()的左、右焦點(diǎn)分別為、,離心率為.過的直線與橢圓的一個(gè)交點(diǎn)為,過垂直于的直線與橢圓的一個(gè)交點(diǎn)為,.(1)求橢圓的方程和點(diǎn)的軌跡的方程;(2)若曲線上的動點(diǎn)到直線:的最大距離為,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】根據(jù)充分條件與必要條件的概念,由導(dǎo)函數(shù)的正負(fù)與函數(shù)單調(diào)性之間關(guān)系,即可得出結(jié)果.【詳解】因?yàn)楹瘮?shù)是區(qū)間上的可導(dǎo)函數(shù),且導(dǎo)函數(shù)為,若“對任意的,”,則在上為增函數(shù);若在上為增函數(shù),則對任意的恒成立,即由“對任意的,”能推出“在上為增函數(shù)”;由“在上為增函數(shù)”不能推出“對任意的,”,因此“對任意的,”是“在上為增函數(shù)”的充分不必要條件.故選:A2、A【解析】已知,,2成等差數(shù)列,得到,化簡得到【詳解】已知,,2成等差數(shù)列,得到,化簡得到可知是焦點(diǎn)在x軸上的拋物線的一支.故答案為A.【點(diǎn)睛】這個(gè)題目考查的是對數(shù)的運(yùn)算以及化簡公式的應(yīng)用,也涉及到了軌跡的問題,求點(diǎn)的軌跡,通常是求誰設(shè)誰,再根據(jù)題干將等量關(guān)系轉(zhuǎn)化為代數(shù)關(guān)系,從而列出方程,化簡即可.3、C【解析】根據(jù)橢圓的定義可得,由即可求解.【詳解】由,可得根據(jù)橢圓的定義,所以.故選:C4、D【解析】由,然后根據(jù)向量數(shù)量積的坐標(biāo)運(yùn)算即可求解.【詳解】解:因,,所以,因?yàn)?,所以,即,解得,故選:D.5、B【解析】求得定點(diǎn),然后得到關(guān)于直線對稱點(diǎn)為,然后可得,計(jì)算即可.【詳解】直線可化為,令解得所以點(diǎn)的坐標(biāo)為.設(shè)點(diǎn)關(guān)于直線的對稱點(diǎn)為,則由,解得,所以點(diǎn)坐標(biāo)為.由線段垂直平分線的性質(zhì)可知,,所以(當(dāng)且僅當(dāng),,,四點(diǎn)共線時(shí)等號成立),所以的最小值為4.故選:B.6、C【解析】結(jié)合基本不等式求得所求的最小值.【詳解】,,當(dāng)且僅當(dāng)時(shí)等號成立.故選:C7、A【解析】以A為原點(diǎn)建立空間直角坐標(biāo)系,求出E,F,D,D1點(diǎn)的坐標(biāo),利用向量求法求解【詳解】如圖,以A為原點(diǎn)建立空間直角坐標(biāo)系,設(shè)正方體的邊長為2,則,,,,,直線與所成角的余弦值為:.故選:A【點(diǎn)睛】本題考查異面直線所成角的求法,屬于基礎(chǔ)題.8、B【解析】判定函數(shù)單調(diào)性,再利用導(dǎo)數(shù)結(jié)合函數(shù)在的單調(diào)性列式計(jì)算作答.【詳解】由函數(shù)得:,當(dāng)且僅當(dāng)時(shí)取“=”,則在R上單調(diào)遞減,于是得函數(shù)在上單調(diào)遞減,即,,即,而在上單調(diào)遞減,當(dāng)時(shí),,則,所以k的取值范圍是.故選:B9、D【解析】由條件知,,依次成公比為的等比數(shù)列,三者之和為50升,根據(jù)等比數(shù)列的前n項(xiàng)和,即故答案為D.10、D【解析】由橢圓的定義及雙曲線的定義結(jié)合余弦定理可得,,的關(guān)系,由此可得,再利用重要不等式求最值,并求此時(shí)的的值.【詳解】設(shè)為第一象限的交點(diǎn),、,則、,解得、,在中,由余弦定理得:,∴,∴,∴,∴,∴,,即,當(dāng)且僅當(dāng),即,時(shí)等號成立,此時(shí)故選:D11、C【解析】由,得在上單調(diào)遞增,并且由的圖象是向上凸,進(jìn)而判斷選項(xiàng).【詳解】由,得在上單調(diào)遞增,因?yàn)?,所以,故A不正確;對,,且,總有,可得函數(shù)的圖象是向上凸,可用如圖的圖象來表示,由表示函數(shù)圖象上各點(diǎn)處的切線的斜率,由函數(shù)圖象可知,隨著的增大,的圖象越來越平緩,即切線的斜率越來越小,所以,故B不正確;,表示點(diǎn)與點(diǎn)連線的斜率,由圖可知,所以C正確,同理,由圖可知,故D不正確.故選:C12、A【解析】求出點(diǎn)關(guān)于坐標(biāo)原點(diǎn)的對稱點(diǎn)是B,再利用兩點(diǎn)之間的距離即可求得結(jié)果.【詳解】點(diǎn)關(guān)于坐標(biāo)原點(diǎn)的對稱點(diǎn)是故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】利用垂徑定理計(jì)算即可.【詳解】設(shè)圓的半徑為,則,得.故答案為:.14、【解析】求出導(dǎo)函數(shù),確定導(dǎo)函數(shù)奇函數(shù),然后可求值【詳解】由已知,它是奇函數(shù),∴故答案為:【點(diǎn)睛】本題考查導(dǎo)數(shù)的運(yùn)算,考查函數(shù)的奇偶性,確定函數(shù)的奇偶性是解題關(guān)鍵15、【解析】根據(jù)漸近線方程、焦距可得,,再根據(jù)雙曲線參數(shù)關(guān)系、焦點(diǎn)的位置寫出雙曲線標(biāo)準(zhǔn)方程.詳解】由題設(shè),可知:,,∴由,可得,,又焦點(diǎn)在軸上,∴雙曲線的標(biāo)準(zhǔn)方程為.故答案為:.16、2【解析】設(shè)拋物線的焦點(diǎn)為,由,結(jié)合拋物線的定義可得線段的中點(diǎn)到軸距離的最小值.【詳解】設(shè)拋物線的焦點(diǎn)為,點(diǎn)在拋物線的準(zhǔn)線上的投影為,點(diǎn)在直線上的投影為,線段的中點(diǎn)為,點(diǎn)到軸的距離為,則,∴,當(dāng)且僅當(dāng)即三點(diǎn)共線時(shí)等號成立,∴線段的中點(diǎn)到軸距離的最小值是2,故答案為:2.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)是,【解析】(1)由拋物線方程求出其焦點(diǎn)坐標(biāo),結(jié)合橢圓的幾何性質(zhì)列出,的方程,解方程求,由此可得橢圓方程,(2)聯(lián)立直線橢圓橢圓方程,求出弦的長和其中垂線方程,再計(jì)算,由此完成證明.【小問1詳解】拋物線的交點(diǎn)坐標(biāo)為(1,0),,又,又,∴,橢圓的標(biāo)準(zhǔn)方程為.【小問2詳解】設(shè)直線的斜率為,則直線的方程為,聯(lián)立消元得到,顯然,,∴,又的中點(diǎn)坐標(biāo)為,直線的中垂線的斜率為∴直線的中垂線方程為,令,,(常數(shù)).【點(diǎn)睛】求定值問題常見的方法有兩種:(1)從特殊入手,求出定值,再證明這個(gè)值與變量無關(guān)(2)直接推理、計(jì)算,并在計(jì)算推理的過程中消去變量,從而得到定值18、(1)樣本中高一年級學(xué)生的人數(shù)為,;(2);(3)【解析】(1)利用分層抽樣可求得樣本中高一年級學(xué)生的人數(shù),利用頻率直方圖中所有矩形的面積之和為可求得的值;(2)利用中位數(shù)左邊的矩形面積之和為可求得中位數(shù)的值;(3)利用頻率分布直方圖可計(jì)算出全校睡眠時(shí)間超過個(gè)小時(shí)的學(xué)生人數(shù).【小問1詳解】解:樣本中高一年級學(xué)生的人數(shù)為.,解得.【小問2詳解】解:設(shè)中位數(shù)為,前兩個(gè)矩形的面積之和為,前三個(gè)矩形的面積之和為,所以,則,得,故樣本數(shù)據(jù)的中位數(shù)約為.【小問3詳解】解:由圖可知,樣本數(shù)據(jù)落在的頻率為,故全校睡眠時(shí)間超過個(gè)小時(shí)的學(xué)生人數(shù)約為.19、(1)證明見解析;(2).【解析】(1)要證,只需證平面,只需證(由勾股定理可證),,只需證平面,只需證(由平面平面可證),(由可證),即可證明結(jié)論.(2)以為原點(diǎn),所在直線分別為x軸,y軸,z軸,建立空間直角坐標(biāo)系寫出點(diǎn)與點(diǎn)的坐標(biāo)由于軸,可設(shè),可得出與的坐標(biāo)設(shè)為平面的法向量,求出法向量.是關(guān)于的一個(gè)式子,求出的取值范圍,即可求出的最小值【小問1詳解】在中,,,,所以,所以所以是等腰直角三角形,即因?yàn)?,所以又因?yàn)槠矫嫫矫妫矫嫫矫?,,所以平面又平面,所以又因?yàn)椋珽C,平面所以平面又平面,所以,所以在中,,,所以所以又因?yàn)?,,所以,所以又,,平面所以平面又平面,所以【小?詳解】以為原點(diǎn),所在直線分別為x軸,y軸,z軸,建立如圖所示的空間直角坐標(biāo)系則,因?yàn)檩S,可設(shè),可求得,設(shè)為平面的法向量則令,解得,所以又因?yàn)槭瞧矫娴姆ㄏ蛄克裕驗(yàn)?,所以所以?dāng)時(shí),取到最小值20、(1)(2)【解析】(1)由成等比數(shù)列得首項(xiàng),從而得到通項(xiàng)公式;(2)利用裂項(xiàng)相消求和可得答案.【小問1詳解】設(shè)數(shù)列的公差為,∵成等比數(shù)列,∴,即,∴,由題意故,得,即.【小問2詳解】,∴21、(1),(2)【解析】(1)設(shè)數(shù)列公差為,由成等比數(shù)列求得,可得.利用求得;(2)利用錯(cuò)位相減求和即可.【小問1詳解】設(shè)數(shù)列公差為,由成等比數(shù)列有:,解得:,所以,數(shù)列,當(dāng)即,,解得:,當(dāng)時(shí),有,所以,得:.又,所以數(shù)列為以為首項(xiàng),公比為的等比數(shù)列,所以數(shù)列的通項(xiàng)公式為:.【小問2詳解】,,,得,,化簡得:.22、(1)橢圓的方程為,點(diǎn)的軌跡的方程為(2)【解析】(1)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年制造業(yè)產(chǎn)銷合作協(xié)議
- 2024年商用大廈施工建設(shè)協(xié)議
- 2024年醫(yī)療貸款保證協(xié)議
- 2024年光纖工程承包協(xié)議
- 2024年加工承攬與材料供應(yīng)協(xié)議
- 2024年升級版:別墅裝修合作協(xié)議
- 2024年區(qū)域貿(mào)易協(xié)議樣本
- 2024年產(chǎn)品經(jīng)銷協(xié)議
- 2024年個(gè)體經(jīng)營者應(yīng)急資金協(xié)議
- 2024年互利共贏:建筑項(xiàng)目投資合作協(xié)議
- 道閘系統(tǒng)施工方案
- 常微分方程與動力系統(tǒng)
- 2023年電子油門踏板行業(yè)洞察報(bào)告及未來五至十年預(yù)測分析報(bào)告
- 國有企業(yè)資金管理制度培訓(xùn)規(guī)范
- 2024年智能物流技術(shù)行業(yè)培訓(xùn)資料全面解析
- 精神障礙患者的社交技巧訓(xùn)練
- 青島版科學(xué)(2017)六三制六年級上冊實(shí)驗(yàn)報(bào)告單
- 如何在酒店管理中培養(yǎng)創(chuàng)新思維
- 合伙人協(xié)議 合伙經(jīng)營協(xié)議全套
- 小學(xué)教學(xué)信息化管理章程
- 光伏項(xiàng)目強(qiáng)制性條文實(shí)施措施及計(jì)劃
評論
0/150
提交評論