版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
江西省宜黃市一中2025屆數(shù)學高二上期末考試試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù)是區(qū)間上的可導函數(shù),且導函數(shù)為,則“對任意的,”是“在上為增函數(shù)”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件2.已知,,2成等差數(shù)列,則在平面直角坐標系中,點M(x,y)的軌跡為()A. B.C. D.3.已知為橢圓的兩個焦點,過的直線交橢圓于兩點,若,則()A. B.C. D.4.已知,,若,則實數(shù)的值為()A. B.C. D.25.已知圓的方程為,直線:恒過定點,若一條光線從點射出,經(jīng)直線上一點反射后到達圓上的一點,則的最小值是()A.3 B.4C.5 D.66.函數(shù)的最小值是()A.2 B.4C.5 D.67.正方體中,E、F分別是與的中點,則直線ED與所成角的余弦值是()A. B.C. D.8.定義在R上的函數(shù)與函數(shù)在上具有相同的單調(diào)性,則k的取值范圍是()A. B.C. D.9.中國古代數(shù)學名著九章算術中有這樣一個問題:今有牛、馬、羊食人苗,苗主責之栗五斗羊主曰:“我羊食半馬”馬主曰:“我馬食半?!苯裼斨?,問各出幾何?此問題的譯文是:今有牛、馬、羊吃了別人的禾苗,禾苗的主人要求賠償5斗栗羊主人說:“我羊所吃的禾苗只有馬的一半”馬主人說:“我馬所吃的禾苗只有牛的一半”打算按此比率償還,他們各應償還多少?已知牛、馬、羊的主人各應償還栗a升,b升,c升,1斗為10升,則下列判斷正確的是A.a,b,c依次成公比為2的等比數(shù)列,且B.a,b,c依次成公比為2的等比數(shù)列,且C.a,b,c依次成公比為的等比數(shù)列,且D.a,b,c依次成公比為的等比數(shù)列,且10.已知橢圓與雙曲線有相同的焦點、,橢圓的離心率為,雙曲線的離心率為,點P為橢圓與雙曲線的交點,且,則當取最大值時的值為()A. B.C. D.11.德國數(shù)學家萊布尼茨是微積分的創(chuàng)立者之一,他從幾何問題出發(fā),引進微積分概念.在研究切線時認識到,求曲線的切線的斜率依賴于縱坐標的差值和橫坐標的差值,以及當此差值變成無限小時它們的比值,這也正是導數(shù)的幾何意義.設是函數(shù)f(x)的導函數(shù),若,對,且.總有,則下列選項正確的是()A. B.C. D.12.設點關于坐標原點的對稱點是B,則等于()A.4 B.C. D.2二、填空題:本題共4小題,每小題5分,共20分。13.若圓心坐標為圓被直線截得的弦長為,則圓的半徑為______.14.已知函數(shù),若,則________.15.已知焦點在軸上的雙曲線,其漸近線方程為,焦距為,則該雙曲線的標準方程為________16.已知拋物線:上有兩動點,,且,則線段的中點到軸距離的最小值是___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的一個焦點與拋物線的焦點重合,橢圓上的動點到焦點的最大距離為.(1)求橢圓的標準方程;(2)過作一條不與坐標軸垂直的直線交橢圓于兩點,弦的中垂線交軸于,當變化時,是否為定值?若是,定值為多少?18.(12分)某中學共有名學生,其中高一年級有名學生,為了解學生的睡眠情況,用分層抽樣的方法,在三個年級中抽取了名學生,依據(jù)每名學生的睡眠時間(單位:小時),繪制出了如圖所示的頻率分布直方圖.(1)求樣本中高一年級學生的人數(shù)及圖中的值;(2)估計樣本數(shù)據(jù)的中位數(shù)(保留兩位小數(shù));(3)估計全校睡眠時間超過個小時的學生人數(shù).19.(12分)在如圖所示的幾何體中,四邊形是平行四邊形,,,,四邊形是矩形,且平面平面,,點是線段上的動點(1)證明:;(2)設平面與平面的夾角為,求的最小值20.(12分)已知數(shù)列是公差為2的等差數(shù)列,且滿足,,成等比數(shù)列(1)求數(shù)列的通項公式;(2)求數(shù)列的前n項和21.(12分)已知數(shù)列是首項為1,公差不為0的等差數(shù)列,且成等比數(shù)列.數(shù)列的前項的和為,且滿足.(1)求數(shù)列的通項公式;(2)求數(shù)列的前項和.22.(10分)如圖,已知橢圓:()的左、右焦點分別為、,離心率為.過的直線與橢圓的一個交點為,過垂直于的直線與橢圓的一個交點為,.(1)求橢圓的方程和點的軌跡的方程;(2)若曲線上的動點到直線:的最大距離為,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】根據(jù)充分條件與必要條件的概念,由導函數(shù)的正負與函數(shù)單調(diào)性之間關系,即可得出結(jié)果.【詳解】因為函數(shù)是區(qū)間上的可導函數(shù),且導函數(shù)為,若“對任意的,”,則在上為增函數(shù);若在上為增函數(shù),則對任意的恒成立,即由“對任意的,”能推出“在上為增函數(shù)”;由“在上為增函數(shù)”不能推出“對任意的,”,因此“對任意的,”是“在上為增函數(shù)”的充分不必要條件.故選:A2、A【解析】已知,,2成等差數(shù)列,得到,化簡得到【詳解】已知,,2成等差數(shù)列,得到,化簡得到可知是焦點在x軸上的拋物線的一支.故答案為A.【點睛】這個題目考查的是對數(shù)的運算以及化簡公式的應用,也涉及到了軌跡的問題,求點的軌跡,通常是求誰設誰,再根據(jù)題干將等量關系轉(zhuǎn)化為代數(shù)關系,從而列出方程,化簡即可.3、C【解析】根據(jù)橢圓的定義可得,由即可求解.【詳解】由,可得根據(jù)橢圓的定義,所以.故選:C4、D【解析】由,然后根據(jù)向量數(shù)量積的坐標運算即可求解.【詳解】解:因,,所以,因為,所以,即,解得,故選:D.5、B【解析】求得定點,然后得到關于直線對稱點為,然后可得,計算即可.【詳解】直線可化為,令解得所以點的坐標為.設點關于直線的對稱點為,則由,解得,所以點坐標為.由線段垂直平分線的性質(zhì)可知,,所以(當且僅當,,,四點共線時等號成立),所以的最小值為4.故選:B.6、C【解析】結(jié)合基本不等式求得所求的最小值.【詳解】,,當且僅當時等號成立.故選:C7、A【解析】以A為原點建立空間直角坐標系,求出E,F,D,D1點的坐標,利用向量求法求解【詳解】如圖,以A為原點建立空間直角坐標系,設正方體的邊長為2,則,,,,,直線與所成角的余弦值為:.故選:A【點睛】本題考查異面直線所成角的求法,屬于基礎題.8、B【解析】判定函數(shù)單調(diào)性,再利用導數(shù)結(jié)合函數(shù)在的單調(diào)性列式計算作答.【詳解】由函數(shù)得:,當且僅當時取“=”,則在R上單調(diào)遞減,于是得函數(shù)在上單調(diào)遞減,即,,即,而在上單調(diào)遞減,當時,,則,所以k的取值范圍是.故選:B9、D【解析】由條件知,,依次成公比為的等比數(shù)列,三者之和為50升,根據(jù)等比數(shù)列的前n項和,即故答案為D.10、D【解析】由橢圓的定義及雙曲線的定義結(jié)合余弦定理可得,,的關系,由此可得,再利用重要不等式求最值,并求此時的的值.【詳解】設為第一象限的交點,、,則、,解得、,在中,由余弦定理得:,∴,∴,∴,∴,∴,,即,當且僅當,即,時等號成立,此時故選:D11、C【解析】由,得在上單調(diào)遞增,并且由的圖象是向上凸,進而判斷選項.【詳解】由,得在上單調(diào)遞增,因為,所以,故A不正確;對,,且,總有,可得函數(shù)的圖象是向上凸,可用如圖的圖象來表示,由表示函數(shù)圖象上各點處的切線的斜率,由函數(shù)圖象可知,隨著的增大,的圖象越來越平緩,即切線的斜率越來越小,所以,故B不正確;,表示點與點連線的斜率,由圖可知,所以C正確,同理,由圖可知,故D不正確.故選:C12、A【解析】求出點關于坐標原點的對稱點是B,再利用兩點之間的距離即可求得結(jié)果.【詳解】點關于坐標原點的對稱點是故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】利用垂徑定理計算即可.【詳解】設圓的半徑為,則,得.故答案為:.14、【解析】求出導函數(shù),確定導函數(shù)奇函數(shù),然后可求值【詳解】由已知,它是奇函數(shù),∴故答案為:【點睛】本題考查導數(shù)的運算,考查函數(shù)的奇偶性,確定函數(shù)的奇偶性是解題關鍵15、【解析】根據(jù)漸近線方程、焦距可得,,再根據(jù)雙曲線參數(shù)關系、焦點的位置寫出雙曲線標準方程.詳解】由題設,可知:,,∴由,可得,,又焦點在軸上,∴雙曲線的標準方程為.故答案為:.16、2【解析】設拋物線的焦點為,由,結(jié)合拋物線的定義可得線段的中點到軸距離的最小值.【詳解】設拋物線的焦點為,點在拋物線的準線上的投影為,點在直線上的投影為,線段的中點為,點到軸的距離為,則,∴,當且僅當即三點共線時等號成立,∴線段的中點到軸距離的最小值是2,故答案為:2.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)是,【解析】(1)由拋物線方程求出其焦點坐標,結(jié)合橢圓的幾何性質(zhì)列出,的方程,解方程求,由此可得橢圓方程,(2)聯(lián)立直線橢圓橢圓方程,求出弦的長和其中垂線方程,再計算,由此完成證明.【小問1詳解】拋物線的交點坐標為(1,0),,又,又,∴,橢圓的標準方程為.【小問2詳解】設直線的斜率為,則直線的方程為,聯(lián)立消元得到,顯然,,∴,又的中點坐標為,直線的中垂線的斜率為∴直線的中垂線方程為,令,,(常數(shù)).【點睛】求定值問題常見的方法有兩種:(1)從特殊入手,求出定值,再證明這個值與變量無關(2)直接推理、計算,并在計算推理的過程中消去變量,從而得到定值18、(1)樣本中高一年級學生的人數(shù)為,;(2);(3)【解析】(1)利用分層抽樣可求得樣本中高一年級學生的人數(shù),利用頻率直方圖中所有矩形的面積之和為可求得的值;(2)利用中位數(shù)左邊的矩形面積之和為可求得中位數(shù)的值;(3)利用頻率分布直方圖可計算出全校睡眠時間超過個小時的學生人數(shù).【小問1詳解】解:樣本中高一年級學生的人數(shù)為.,解得.【小問2詳解】解:設中位數(shù)為,前兩個矩形的面積之和為,前三個矩形的面積之和為,所以,則,得,故樣本數(shù)據(jù)的中位數(shù)約為.【小問3詳解】解:由圖可知,樣本數(shù)據(jù)落在的頻率為,故全校睡眠時間超過個小時的學生人數(shù)約為.19、(1)證明見解析;(2).【解析】(1)要證,只需證平面,只需證(由勾股定理可證),,只需證平面,只需證(由平面平面可證),(由可證),即可證明結(jié)論.(2)以為原點,所在直線分別為x軸,y軸,z軸,建立空間直角坐標系寫出點與點的坐標由于軸,可設,可得出與的坐標設為平面的法向量,求出法向量.是關于的一個式子,求出的取值范圍,即可求出的最小值【小問1詳解】在中,,,,所以,所以所以是等腰直角三角形,即因為,所以又因為平面平面,平面平面,,所以平面又平面,所以又因為,EC,平面所以平面又平面,所以,所以在中,,,所以所以又因為,,所以,所以又,,平面所以平面又平面,所以【小問2詳解】以為原點,所在直線分別為x軸,y軸,z軸,建立如圖所示的空間直角坐標系則,因為軸,可設,可求得,設為平面的法向量則令,解得,所以又因為是平面的法向量所以,因為,所以所以當時,取到最小值20、(1)(2)【解析】(1)由成等比數(shù)列得首項,從而得到通項公式;(2)利用裂項相消求和可得答案.【小問1詳解】設數(shù)列的公差為,∵成等比數(shù)列,∴,即,∴,由題意故,得,即.【小問2詳解】,∴21、(1),(2)【解析】(1)設數(shù)列公差為,由成等比數(shù)列求得,可得.利用求得;(2)利用錯位相減求和即可.【小問1詳解】設數(shù)列公差為,由成等比數(shù)列有:,解得:,所以,數(shù)列,當即,,解得:,當時,有,所以,得:.又,所以數(shù)列為以為首項,公比為的等比數(shù)列,所以數(shù)列的通項公式為:.【小問2詳解】,,,得,,化簡得:.22、(1)橢圓的方程為,點的軌跡的方程為(2)【解析】(1)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 9我的戰(zhàn)友邱少云課件(共21張)
- 2025年度屋頂綠化植物種植與養(yǎng)護合同3篇
- 2025年度出租車司機職業(yè)健康保險及補充醫(yī)療保險合同3篇
- 2025年度企業(yè)市場營銷策劃合同范本2篇
- 2024露天宴會廳租賃及餐飲服務合同3篇
- 2024綠植租擺合同-企業(yè)員工福利項目協(xié)議3篇
- 2024跨境電商平臺運營代理協(xié)議
- 【單元AB卷 能力提升卷】人教新起點英語二年級上冊單元能力提升卷-Unit 2 Boys and Girls(含答案)
- 2024陶瓷工藝創(chuàng)新研發(fā)項目合作協(xié)議3篇
- 2025年度LED芯片研發(fā)與采購合作協(xié)議3篇
- 保險產(chǎn)品創(chuàng)新與市場定位培訓課件
- 2022-2023學年山東省淄博四中高二(上)期末數(shù)學試卷含答案
- 《建筑賦比興》一些筆記和摘錄(上)
- (完整文本版)體檢報告單模版
- 時間管理的原則與方法
- 【A公司人力資源招聘管理問題及優(yōu)化建議分析13000字(論文)】
- 鋼結(jié)構(gòu)牛腿計算
- 泌尿外科內(nèi)鏡診療技術質(zhì)量保障措施及應急預案
- 華北電力大學(保定)
- Unity3D游戲開發(fā)PPT完整全套教學課件
- 腎內(nèi)科學篇病例分析1
評論
0/150
提交評論