版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2025屆云南省麗江市古城二中數(shù)學(xué)高三第一學(xué)期期末調(diào)研模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.自2019年12月以來,在湖北省武漢市發(fā)現(xiàn)多起病毒性肺炎病例,研究表明,該新型冠狀病毒具有很強(qiáng)的傳染性各級政府反應(yīng)迅速,采取了有效的防控阻擊措施,把疫情控制在最低范圍之內(nèi).某社區(qū)按上級要求做好在鄂返鄉(xiāng)人員體格檢查登記,有3個不同的住戶屬在鄂返鄉(xiāng)住戶,負(fù)責(zé)該小區(qū)體格檢查的社區(qū)診所共有4名醫(yī)生,現(xiàn)要求這4名醫(yī)生都要分配出去,且每個住戶家里都要有醫(yī)生去檢查登記,則不同的分配方案共有()A.12種 B.24種 C.36種 D.72種2.已知函數(shù),且關(guān)于的方程有且只有一個實數(shù)根,則實數(shù)的取值范圍().A. B. C. D.3.已知為銳角,且,則等于()A. B. C. D.4.已知函數(shù),其中,記函數(shù)滿足條件:為事件,則事件發(fā)生的概率為A. B.C. D.5.設(shè)f(x)是定義在R上的偶函數(shù),且在(0,+∞)單調(diào)遞減,則()A. B.C. D.6.i是虛數(shù)單位,若,則乘積的值是()A.-15 B.-3 C.3 D.157.函數(shù)的圖象為C,以下結(jié)論中正確的是()①圖象C關(guān)于直線對稱;②圖象C關(guān)于點對稱;③由y=2sin2x的圖象向右平移個單位長度可以得到圖象C.A.① B.①② C.②③ D.①②③8.已知命題,;命題若,則,下列命題為真命題的是()A. B. C. D.9.使得的展開式中含有常數(shù)項的最小的n為()A. B. C. D.10.如圖,圓的半徑為,,是圓上的定點,,是圓上的動點,點關(guān)于直線的對稱點為,角的始邊為射線,終邊為射線,將表示為的函數(shù),則在上的圖像大致為()A. B. C. D.11.已知曲線的一條對稱軸方程為,曲線向左平移個單位長度,得到曲線的一個對稱中心的坐標(biāo)為,則的最小值是()A. B. C. D.12.在平面直角坐標(biāo)系xOy中,已知橢圓的右焦點為,若F到直線的距離為,則E的離心率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.復(fù)數(shù)為虛數(shù)單位)的虛部為__________.14.設(shè),分別是橢圓C:()的左、右焦點,直線l過交橢圓C于A,B兩點,交y軸于E點,若滿足,且,則橢圓C的離心率為______.15.設(shè)數(shù)列為等差數(shù)列,其前項和為,已知,,若對任意都有成立,則的值為__________.16.已知平面向量,,滿足||=1,||=2,,的夾角等于,且()?()=0,則||的取值范圍是_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,四棱錐中,四邊形是矩形,,,為正三角形,且平面平面,、分別為、的中點.(1)證明:平面;(2)求幾何體的體積.18.(12分)為了打好脫貧攻堅戰(zhàn),某貧困縣農(nóng)科院針對玉米種植情況進(jìn)行調(diào)研,力爭有效地改良玉米品種,為農(nóng)民提供技術(shù)支援,現(xiàn)對已選出的一組玉米的莖高進(jìn)行統(tǒng)計,獲得莖葉圖如圖(單位:厘米),設(shè)莖高大于或等于180厘米的玉米為高莖玉米,否則為矮莖玉米.(1)求出易倒伏玉米莖高的中位數(shù);(2)根據(jù)莖葉圖的數(shù)據(jù),完成下面的列聯(lián)表:抗倒伏易倒伏矮莖高莖(3)根據(jù)(2)中的列聯(lián)表,是否可以在犯錯誤的概率不超過1%的前提下,認(rèn)為抗倒伏與玉米矮莖有關(guān)?附:,0.0500.0100.0013.8416.63510.82819.(12分)已知分別是橢圓的左焦點和右焦點,橢圓的離心率為是橢圓上兩點,點滿足.(1)求的方程;(2)若點在圓上,點為坐標(biāo)原點,求的取值范圍.20.(12分)以平面直角坐標(biāo)系的原點為極點,軸的正半軸為極軸,且在兩種坐標(biāo)系中取相同的長度單位,建立極坐標(biāo)系,已知曲線,曲線(為參數(shù)),求曲線交點的直角坐標(biāo).21.(12分)2019年春節(jié)期間,某超市準(zhǔn)備舉辦一次有獎促銷活動,若顧客一次消費達(dá)到400元則可參加一次抽獎活動,超市設(shè)計了兩種抽獎方案.方案一:一個不透明的盒子中裝有30個質(zhì)地均勻且大小相同的小球,其中10個紅球,20個白球,攪拌均勻后,顧客從中隨機(jī)抽取一個球,若抽到紅球則顧客獲得60元的返金券,若抽到白球則獲得20元的返金券,且顧客有放回地抽取3次.方案二:一個不透明的盒子中裝有30個質(zhì)地均勻且大小相同的小球,其中10個紅球,20個白球,攪拌均勻后,顧客從中隨機(jī)抽取一個球,若抽到紅球則顧客獲得80元的返金券,若抽到白球則未中獎,且顧客有放回地抽取3次.(1)現(xiàn)有兩位顧客均獲得抽獎機(jī)會,且都按方案一抽獎,試求這兩位顧客均獲得180元返金券的概率;(2)若某顧客獲得抽獎機(jī)會.①試分別計算他選擇兩種抽獎方案最終獲得返金券的數(shù)學(xué)期望;②為了吸引顧客消費,讓顧客獲得更多金額的返金券,該超市應(yīng)選擇哪一種抽獎方案進(jìn)行促銷活動?22.(10分)在中,角的對邊分別為,且.(1)求角的大??;(2)若函數(shù)圖象的一條對稱軸方程為且,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
先將4名醫(yī)生分成3組,其中1組有2人,共有種選法,然后將這3組醫(yī)生分配到3個不同的住戶中去,有種方法,由分步原理可知共有種.【詳解】不同分配方法總數(shù)為種.故選:C【點睛】此題考查的是排列組合知識,解此類題時一般先組合再排列,屬于基礎(chǔ)題.2、B【解析】
根據(jù)條件可知方程有且只有一個實根等價于函數(shù)的圖象與直線只有一個交點,作出圖象,數(shù)形結(jié)合即可.【詳解】解:因為條件等價于函數(shù)的圖象與直線只有一個交點,作出圖象如圖,由圖可知,,故選:B.【點睛】本題主要考查函數(shù)圖象與方程零點之間的關(guān)系,數(shù)形結(jié)合是關(guān)鍵,屬于基礎(chǔ)題.3、C【解析】
由可得,再利用計算即可.【詳解】因為,,所以,所以.故選:C.【點睛】本題考查二倍角公式的應(yīng)用,考查學(xué)生對三角函數(shù)式化簡求值公式的靈活運(yùn)用的能力,屬于基礎(chǔ)題.4、D【解析】
由得,分別以為橫縱坐標(biāo)建立如圖所示平面直角坐標(biāo)系,由圖可知,.5、D【解析】
利用是偶函數(shù)化簡,結(jié)合在區(qū)間上的單調(diào)性,比較出三者的大小關(guān)系.【詳解】是偶函數(shù),,而,因為在上遞減,,即.故選:D【點睛】本小題主要考查利用函數(shù)的奇偶性和單調(diào)性比較大小,屬于基礎(chǔ)題.6、B【解析】,∴,選B.7、B【解析】
根據(jù)三角函數(shù)的對稱軸、對稱中心和圖象變換的知識,判斷出正確的結(jié)論.【詳解】因為,又,所以①正確.,所以②正確.將的圖象向右平移個單位長度,得,所以③錯誤.所以①②正確,③錯誤.故選:B【點睛】本小題主要考查三角函數(shù)的對稱軸、對稱中心,考查三角函數(shù)圖象變換,屬于基礎(chǔ)題.8、B【解析】解:命題p:?x>0,ln(x+1)>0,則命題p為真命題,則¬p為假命題;取a=﹣1,b=﹣2,a>b,但a2<b2,則命題q是假命題,則¬q是真命題.∴p∧q是假命題,p∧¬q是真命題,¬p∧q是假命題,¬p∧¬q是假命題.故選B.9、B【解析】二項式展開式的通項公式為,若展開式中有常數(shù)項,則,解得,當(dāng)r取2時,n的最小值為5,故選B【考點定位】本題考查二項式定理的應(yīng)用.10、B【解析】
根據(jù)圖象分析變化過程中在關(guān)鍵位置及部分區(qū)域,即可排除錯誤選項,得到函數(shù)圖象,即可求解.【詳解】由題意,當(dāng)時,P與A重合,則與B重合,所以,故排除C,D選項;當(dāng)時,,由圖象可知選B.故選:B【點睛】本題主要考查三角函數(shù)的圖像與性質(zhì),正確表示函數(shù)的表達(dá)式是解題的關(guān)鍵,屬于中檔題.11、C【解析】
在對稱軸處取得最值有,結(jié)合,可得,易得曲線的解析式為,結(jié)合其對稱中心為可得即可得到的最小值.【詳解】∵直線是曲線的一條對稱軸.,又..∴平移后曲線為.曲線的一個對稱中心為..,注意到故的最小值為.故選:C.【點睛】本題考查余弦型函數(shù)性質(zhì)的應(yīng)用,涉及到函數(shù)的平移、函數(shù)的對稱性,考查學(xué)生數(shù)形結(jié)合、數(shù)學(xué)運(yùn)算的能力,是一道中檔題.12、A【解析】
由已知可得到直線的傾斜角為,有,再利用即可解決.【詳解】由F到直線的距離為,得直線的傾斜角為,所以,即,解得.故選:A.【點睛】本題考查橢圓離心率的問題,一般求橢圓離心率的問題時,通常是構(gòu)造關(guān)于的方程或不等式,本題是一道容易題.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】試題分析:,即虛部為1,故填:1.考點:復(fù)數(shù)的代數(shù)運(yùn)算14、【解析】
采用數(shù)形結(jié)合,計算以及,然后根據(jù)橢圓的定義可得,并使用余弦定理以及,可得結(jié)果.【詳解】如圖由,所以由,所以又,則所以所以化簡可得:則故答案為:【點睛】本題考查橢圓的定義以及余弦定理的使用,關(guān)鍵在于根據(jù)角度求出線段的長度,考查分析能力以及計算能力,屬中檔題.15、【解析】
由已知條件得出關(guān)于首項和公差的方程組,解出這兩個量,計算出,利用二次函數(shù)的基本性質(zhì)求出的最大值及其對應(yīng)的值,即可得解.【詳解】設(shè)等差數(shù)列的公差為,由,解得,.所以,當(dāng)時,取得最大值,對任意都有成立,則為數(shù)列的最大值,因此,.故答案為:.【點睛】本題考查等差數(shù)列前項和最值的計算,一般利用二次函數(shù)的基本性質(zhì)求解,考查計算能力,屬于中等題.16、【解析】
計算得到||,||cosα﹣1,解得cosα,根據(jù)三角函數(shù)的有界性計算范圍得到答案.【詳解】由()?()=0可得()?||?||cosα﹣1×2cos||?||cosα﹣1,α為與的夾角.再由2?1+4+2×1×2cos7可得||,∴||cosα﹣1,解得cosα.∵0≤α≤π,∴﹣1≤cosα≤1,∴1,即||+1≤0,解得||,故答案為.【點睛】本題考查了向量模的范圍,意在考查學(xué)生的計算能力,利用三角函數(shù)的有界性是解題的關(guān)鍵.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)【解析】
(1)由題可知,根據(jù)三角形的中位線的性質(zhì),得出,根據(jù)矩形的性質(zhì)得出,所以,再利用線面平行的判定定理即可證出平面;(2)由于平面平面,根據(jù)面面垂直的性質(zhì),得出平面,從而得出到平面的距離為,結(jié)合棱錐的體積公式,即可求得結(jié)果.【詳解】解:(1)∵,分別為,的中點,∴,∵四邊形是矩形,∴,∴,∵平面,平面,∴平面.(2)取,的中點,,連接,,,,則,由于為三棱柱,為四棱錐,∵平面平面,∴平面,由已知可求得,∴到平面的距離為,因為四邊形是矩形,,,,設(shè)幾何體的體積為,則,∴,即:.【點睛】本題考查線面平行的判定、面面垂直的性質(zhì)和棱錐的體積公式,考查邏輯推理和計算能力.18、(1)190(2)見解析(3)可以在犯錯誤的概率不超過1%的前提下,認(rèn)為抗倒伏與玉米矮莖有關(guān).【解析】
(1)排序后第10和第11兩個數(shù)的平均數(shù)為中位數(shù);(2)由莖葉圖可得列聯(lián)表;(3)由列聯(lián)表計算可得結(jié)論.【詳解】解:(1).(2)抗倒伏易倒伏矮莖154高莖1016(3)由于,因此可以在犯錯誤的概率不超過1%的前提下,認(rèn)為抗倒伏與玉米矮莖有關(guān).【點睛】本題考查莖葉圖,考查獨立性檢驗,正確認(rèn)識莖葉圖是解題關(guān)鍵.19、(1);(2).【解析】
(1)根據(jù)焦點坐標(biāo)和離心率,結(jié)合橢圓中的關(guān)系,即可求得的值,進(jìn)而得橢圓的標(biāo)準(zhǔn)方程.(2)設(shè)出直線的方程為,由題意可知為中點.聯(lián)立直線與橢圓方程,由韋達(dá)定理表示出,由判別式可得;由平面向量的線性運(yùn)算及數(shù)量積定義,化簡可得,代入弦長公式化簡;由中點坐標(biāo)公式可得點的坐標(biāo),代入圓的方程,化簡可得,代入數(shù)量積公式并化簡,由換元法令,代入可得,再令及,結(jié)合函數(shù)單調(diào)性即可確定的取值范圍,即確定的取值范圍,因而可得的取值范圍.【詳解】(1)分別是橢圓的左焦點和右焦點,則,橢圓的離心率為則解得,所以,所以的方程為.(2)設(shè)直線的方程為,點滿足,則為中點,點在圓上,設(shè),聯(lián)立直線與橢圓方程,化簡可得,所以則,化簡可得,而由弦長公式代入可得為中點,則點在圓上,代入化簡可得,所以令,則,,令,則令,則,所以,因為在內(nèi)單調(diào)遞增,所以,即所以【點睛】本題考查了橢圓的標(biāo)準(zhǔn)方程求法,直線與橢圓的位置關(guān)系綜合應(yīng)用,由韋達(dá)定理研究參數(shù)間的關(guān)系,平面向量的線性運(yùn)算與數(shù)量積運(yùn)算,弦長公式的應(yīng)用及換元法在求取值范圍問題中的綜合應(yīng)用,計算量大,屬于難題.20、【解析】
利用極坐標(biāo)方程與普通方程、參數(shù)方程間的互化公式化簡即可.【詳解】因為,所以,所以曲線的直角坐標(biāo)方程為.由,得,所以曲線的普通方程為.由,得,所以(舍),所以,所以曲線的交點坐標(biāo)為.【點睛】本題考查極坐標(biāo)方程與普通方程,參數(shù)方程與普通方程間的互化,考查學(xué)生的計算能力,是一道容易題.21、(1)(2)①②第一種抽獎方案.【解析】
(1)方案一中每一次摸到紅球的概率為,每名顧客有放回的抽3次獲180元返金劵的概率為,根據(jù)相互獨立事件的概率可知兩顧客都獲得180元返金劵的概率(2)①分別計算方案一,方案二顧客獲返金卷的期望,方案一列出分布列計
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 根莖葉(說課稿)-2023-2024學(xué)年科學(xué)三年級下冊人教鄂教版
- 浙江省寧波市鎮(zhèn)海中學(xué)浙教版高中信息技術(shù)說課稿:Photoshop制作賀卡
- 全麻插管術(shù)前術(shù)后護(hù)理
- 基礎(chǔ)工程安全培訓(xùn)
- 小學(xué)科學(xué)二年級機(jī)械結(jié)構(gòu)課程說課稿 30雨刷器
- 第七單元《不封閉路線的植樹問題》(說課稿)-2024-2025學(xué)年五年級上冊數(shù)學(xué)人教版001
- 2024版建筑工程承包合同的特點
- 2024版APP應(yīng)用開發(fā)服務(wù)合同
- 企業(yè)內(nèi)部管理優(yōu)化與提升
- 第十章 健康的身體 心臟的結(jié)構(gòu)與作用 血液循環(huán)說課稿 -2024-2025學(xué)年牛津上海版七年級上冊科學(xué)
- 選礦廠管理文件制度匯編
- 2023-2024學(xué)年四川省瀘州市小學(xué)數(shù)學(xué)四年級上冊期末評估測試題
- YC/T 273-2014卷煙包裝設(shè)計要求
- GB/T 9944-2015不銹鋼絲繩
- GB/T 5019.11-2009以云母為基的絕緣材料第11部分:塑型云母板
- 初中生家長會ppt
- GA/T 168-2019法醫(yī)學(xué)機(jī)械性損傷尸體檢驗規(guī)范
- GA/T 1567-2019城市道路交通隔離欄設(shè)置指南
- 第六章環(huán)境污染物的特殊毒性及其評價致癌作用課件
- 醫(yī)療器械銷售工作總結(jié)-醫(yī)療器械銷售工作總結(jié)課件
- 2021-2022學(xué)年天津市和平區(qū)八年級(上)期末物理試題及答案解析
評論
0/150
提交評論