![2025屆云南省會澤一中高二數(shù)學(xué)第一學(xué)期期末統(tǒng)考模擬試題含解析_第1頁](http://file4.renrendoc.com/view14/M04/3C/3A/wKhkGWcmcR6AAbnoAAG4ofRtj0Y319.jpg)
![2025屆云南省會澤一中高二數(shù)學(xué)第一學(xué)期期末統(tǒng)考模擬試題含解析_第2頁](http://file4.renrendoc.com/view14/M04/3C/3A/wKhkGWcmcR6AAbnoAAG4ofRtj0Y3192.jpg)
![2025屆云南省會澤一中高二數(shù)學(xué)第一學(xué)期期末統(tǒng)考模擬試題含解析_第3頁](http://file4.renrendoc.com/view14/M04/3C/3A/wKhkGWcmcR6AAbnoAAG4ofRtj0Y3193.jpg)
![2025屆云南省會澤一中高二數(shù)學(xué)第一學(xué)期期末統(tǒng)考模擬試題含解析_第4頁](http://file4.renrendoc.com/view14/M04/3C/3A/wKhkGWcmcR6AAbnoAAG4ofRtj0Y3194.jpg)
![2025屆云南省會澤一中高二數(shù)學(xué)第一學(xué)期期末統(tǒng)考模擬試題含解析_第5頁](http://file4.renrendoc.com/view14/M04/3C/3A/wKhkGWcmcR6AAbnoAAG4ofRtj0Y3195.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2025屆云南省會澤一中高二數(shù)學(xué)第一學(xué)期期末統(tǒng)考模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.為了調(diào)查全國人口的壽命,抽查了11個省(市)的2500名城鎮(zhèn)居民,這2500名城鎮(zhèn)居民的壽命的全體是()A.總體 B.個體C.樣本 D.樣本容量2.若雙曲線的漸近線方程為,則實數(shù)a的值為()A B.C.2 D.3.下列求導(dǎo)運算正確的是()A. B.C. D.4.隨機地向兩個標(biāo)號分別為1與2的格子涂色,涂上紅色或綠色,在已知其中一個格子顏色為紅色條件下另一個格子顏色也為紅色的概率為()A. B.C. D.5.在平面直角坐標(biāo)系中,雙曲線C:的左焦點為F,過F且與x軸垂直的直線與C交于A,B兩點,若是正三角形,則C的離心率為()A. B.C. D.6.已知等比數(shù)列{an}的前n項和為S,若,且,則S3等于()A.28 B.26C.28或-12 D.26或-107.一個動圓與定圓相外切,且與直線相切,則動圓圓心的軌跡方程為()A. B.C. D.8.已知等比數(shù)列滿足,則q=()A.1 B.-1C.3 D.-39.設(shè)變量滿足約束條件:,則的最小值()A. B.C. D.10.圓上到直線的距離為的點共有A.個 B.個C.個 D.個11.已知圓C過點,圓心在x軸上,則圓C的方程為()A. B.C. D.12.已知直線的方向向量為,則直線l的傾斜角為()A.30° B.60°C.120° D.150°二、填空題:本題共4小題,每小題5分,共20分。13.如圖所示,在正方體中,點是底面內(nèi)(含邊界)的一點,且平面,則異面直線與所成角的取值范圍為____________14.曲線在處的切線方程是________.15.已知命題,則命題的的否定是___________.16.古希臘數(shù)學(xué)家阿波羅尼斯發(fā)現(xiàn):平面內(nèi)到兩個定點,的距離之比為定值的點的軌跡是圓.人們將這個圓稱為阿波羅尼斯圓,簡稱阿氏圓.已知點,,動點滿足,記動點的軌跡為曲線,給出下列四個結(jié)論:①曲線方程為;②曲線上存在點,使得到點的距離為;③曲線上存在點,使得到點的距離大于到直線的距離;④曲線上存在點,使得到點與點的距離之和為.其中所有正確結(jié)論的序號是___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)等差數(shù)列的前項和為,已知,.(1)求數(shù)列的通項公式;(2)求數(shù)列的前項和.18.(12分)如圖,正三棱柱的側(cè)棱長為,底面邊長為,點為的中點,點在直線上,且(1)證明:面;(2)求平面和平面夾角的余弦值19.(12分)已知,使;不等式對一切恒成立.如果為真命題,為假命題,求實數(shù)的取值范圍.20.(12分)已知等差數(shù)列滿足(1)求的通項公式;(2)設(shè),求數(shù)列的前n項和21.(12分)已知圓,點(1)若點在圓外部,求實數(shù)的取值范圍;(2)當(dāng)時,過點的直線交圓于,兩點,求面積的最大值及此時直線l的斜率22.(10分)甲、乙兩人參加普法知識競賽,共有5題,選擇題(1)甲、乙兩人中有一個抽到選擇題(2)甲、乙兩人中至少有一人抽到選擇題
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】由樣本的概念即知.【詳解】由題意可知,這2500名城鎮(zhèn)居民的壽命的全體是樣本.2、D【解析】由雙曲線的漸近線方程結(jié)合已知可得.【詳解】雙曲線方程為所以漸近線為,故,解得:.故選:D3、B【解析】根據(jù)基本初等函數(shù)的導(dǎo)數(shù)和求導(dǎo)法則判斷.【詳解】,,,,只有B正確.故選:B.【點睛】本題考查基本初等函數(shù)的導(dǎo)數(shù)公式,考查導(dǎo)數(shù)的運算法則,屬于基礎(chǔ)題.4、D【解析】根據(jù)古典概型的概率公式即可得出答案.【詳解】在已知其中一個格子顏色為紅色條件下另一個格子顏色有紅色與綠色兩種情況,其中一個格子顏色為紅色條件下另一個格子顏色也為紅色的情況有1種,所以在已知其中一個格子顏色為紅色條件下另一個格子顏色也為紅色的概率為.故選:D.5、A【解析】設(shè)雙曲線半焦距為c,求出,由給定的正三角形建立等量關(guān)系,結(jié)合計算作答.【詳解】設(shè)雙曲線半焦距為c,則,而軸,由得,從而有,而是正三角形,即有,則,整理得,因此有,而,解得,所以C的離心率為.故選:A6、C【解析】根據(jù)等比數(shù)列的通項公式列出方程求解,直接計算S3即可.【詳解】由可得,即,所以,又,解得,所以,即,當(dāng)時,,所以,當(dāng)時,,所以,故選:C7、D【解析】根據(jù)點到直線的距離與點到點之間距離的關(guān)系化簡即可.【詳解】定圓的圓心,半徑為2,設(shè)動圓圓心P點坐標(biāo)為(x,y),動圓的半徑為r,d為動圓圓心到直線的距離,即r,則根據(jù)兩圓相外切及直線與圓相切的性質(zhì)可得,所以,化簡得:∴動圓圓心軌跡方程為故選:D8、C【解析】根據(jù)已知條件,利用等比數(shù)列的基本量列出方程,即可求得結(jié)果.【詳解】因為,故可得;解得.故選:C.9、D【解析】如圖作出可行域,知可行域的頂點是A(-2,2)、B()及C(-2,-2),平移,當(dāng)經(jīng)過A時,的最小值為-8,故選D.10、C【解析】求出圓的圓心和半徑,比較圓心到直線的距離和圓的半徑的關(guān)系即可得解.【詳解】圓可變?yōu)?,圓心為,半徑為,圓心到直線的距離,圓上到直線的距離為的點共有個.故選:C.【點睛】本題考查了圓與直線的位置關(guān)系,考查了學(xué)生合理轉(zhuǎn)化的能力,屬于基礎(chǔ)題.11、C【解析】設(shè)出圓的標(biāo)準(zhǔn)方程,將已知點的坐標(biāo)代入,解方程組即可.【詳解】設(shè)圓的標(biāo)準(zhǔn)方程為,將坐標(biāo)代入得:,解得,故圓的方程為,故選:C.12、B【解析】利用直線的方向向量求出其斜率,進(jìn)而求出傾斜角作答.【詳解】因直線的方向向量為,則直線l的斜率,直線l的傾斜角,于是得,解得,所以直線l的傾斜角為.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】過作平面平面,得到在與平面的交線上,連接,證得平面平面,得到點在上,設(shè)正方體的棱長為,且,得到,,設(shè)與所成角為,利用向量的夾角公式,求得,結(jié)合二次函數(shù)的性質(zhì),即可求解.【詳解】過作平面平面,因為點是底面內(nèi)(含邊界)的一點,且平面,則平面,即在與平面的交線上,連接,因為且,所以四邊形是平行四邊形,所以,平面,同理可證平面,所以平面平面,則平面即為,點在線段上,設(shè)正方體的棱長為,且,則,,可得,設(shè)與所成角為,則,當(dāng)時,取得最小值,最小值為,當(dāng)或時,取得最大值,最大值為故答案為14、【解析】求出函數(shù)的導(dǎo)函數(shù),把代入即可得到切線的斜率,然后根據(jù)和斜率寫出切線的方程即可.【詳解】解:由函數(shù)知,把代入得到切線的斜率則切線方程為:,即.故答案為:【點睛】本題考查導(dǎo)數(shù)的幾何意義,屬于基礎(chǔ)題15、【解析】利用含有一個量詞的命題的否定的定義求解.【詳解】因為命題是存在量詞命題,所以其否定是全稱量詞命題即,故答案為:16、①④【解析】設(shè),根據(jù)滿足,利用兩點間距離公式化簡整理,即可判斷①是否正確;由①可知,圓上的點到的距離的范圍為,進(jìn)而可判斷②是否正確;設(shè),根據(jù)題意可知,再根據(jù)在曲線上,可得,由此即可判斷③是否正確;由橢圓的的定義,可知在橢圓上,再根據(jù)橢圓與曲線的位置關(guān)系,即可判斷④是否正確.【詳解】設(shè),因為滿足,所以,整理可得:,即,所以①正確;對于②中,由①可知,點在圓的外部,因為到圓心的距離,半徑為,所以圓上的點到的距離的范圍為,而,所以②不正確;對于③中,假設(shè)存在,使得到點的距離大于到直線的距離,又,到直線的距離,所以,化簡可得,又,所以,即,故假設(shè)不成立,故③不正確;對于④中,假設(shè)存在這樣的點,使得到點與點的距離之和為,則在以點與點為焦點,實軸長為的橢圓上,即在橢圓上,易知橢圓與曲線有交點,故曲線上存在點,使得到點與點的距離之和為;所以④正確.故答案為:①④.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)根據(jù)已知條件求得等差數(shù)列的首項和公差,由此求得.(2)利用裂項求和法求得.【小問1詳解】設(shè)等差數(shù)列的公差為,則,解得,.∴.【小問2詳解】由(1)知.∴.∴.18、(1)證明見解析(2)【解析】(1)證明平面,可得出,再由結(jié)合線面垂直的判定定理可證得結(jié)論成立;(2)以點為坐標(biāo)原點,、、的方向分別為、、軸的正方向建立空間直角坐標(biāo)系,利用空間向量法可求得結(jié)果.【小問1詳解】證明:正中,點為的中點,,因為平面,平面,則,,則平面,平面,則,又,且,平面.【小問2詳解】解:因為,以點為坐標(biāo)原點,、、的方向分別為、、軸的正方向建立如下圖所示的空間直角坐標(biāo)系,則、、、,設(shè)平面的法向量為,,,則,取,可得,平面,平面,則,又因為,,故平面,所以,平面的一個法向量為,則.因此,平面和平面夾角的余弦值為.19、【解析】若真命題,利用分離參數(shù)法結(jié)合指數(shù)函數(shù)性質(zhì),可得;若為真命題,利用分離參數(shù)法并結(jié)合基本不等式可得,再根據(jù)為真命題,為假命題,可知,一真命題一假命題;再分“為真命題,為假命題”和“為假命題,為真命題”兩種情況,求解范圍,即可得到結(jié)果.【詳解】解:若為真命題,則有解,所以,即;若為真命題,則對一切恒成立,令則,當(dāng)且僅當(dāng),即時,取得最小值;所以,即;又為真命題,為假命題,所以,一真命題一假命題;當(dāng)為真命題,為假命題時,,所以;當(dāng)為假命題,為真命題時,,所以;綜上所述,.20、(1)(2)【解析】(1)設(shè)等差數(shù)列的公差為d,由題意得列出方程組,可求得的值,代入公式,即可得答案.(2)由(1)可得,利用等比數(shù)列的定義,可證數(shù)列為等比數(shù)列,結(jié)合前n項和公式,即可得答案.【小問1詳解】設(shè)等差數(shù)列的公差為d,由題意得,解得,所以通項公式【小問2詳解】由(1)可得,,又,所以數(shù)列是以4為首項,4為公比的等比數(shù)列,所以21、(1);(2)最大值為2,【解析】(1)根據(jù)題意,將圓的方程變形為標(biāo)準(zhǔn)方程,由點與圓的位置關(guān)系可得,求解不等式組得答案;(2)當(dāng)時,圓的方程為,求出圓心與半徑,設(shè),則,分析可得面積的最大值,結(jié)合直線與圓的位置關(guān)系可得圓心到直線的距離,設(shè)直線的方程為,即,由點到直線的距離公式列式求得的值【詳解】解:(1)根據(jù)題意,圓,即,若在圓外,則有,解得:,即的取值范圍為;(2)當(dāng)時,圓的方程為,圓心為,半徑,設(shè),則,當(dāng)時,面積取得最大值,且其最大值為2,此時為等腰直角三角形,圓心到直線的距離,設(shè)直線的方程為,即,則有,解得,即直線的斜率【點睛】易錯點點睛:本題第一問解答過程中,容易忽視二元二次方程表示圓的條件,導(dǎo)致出錯,解
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年企業(yè)策劃辦公用品采購合同協(xié)議
- 2025年醫(yī)療器械設(shè)備年維護服務(wù)合同范例
- 2025年泳池水處理設(shè)備項目申請報告模板
- 2025年銷售合同范例寶典
- 2025年合作銷售利潤分配協(xié)議書模板
- 2025年微波等離子炬光譜儀項目立項申請報告模范
- 2025年協(xié)同輔導(dǎo)協(xié)議書
- 2025年個人信用質(zhì)押合同樣式
- 2025年豪華游輪項目立項申請報告模板
- 2025年上海市電網(wǎng)建設(shè)與施工安全合作協(xié)議
- 運輸車輛掛靠協(xié)議書(15篇)
- 完整版:美制螺紋尺寸對照表(牙數(shù)、牙高、螺距、小徑、中徑外徑、鉆孔)
- 繪本閱讀促進(jìn)幼兒分享與合作行為發(fā)展的研究分析-以中班為例 學(xué)前教育專業(yè)
- 部編人教版五年級道德與法治下冊全冊課件完整版
- 醫(yī)院醫(yī)療質(zhì)量管理制度完整版
- 粵劇課程設(shè)計
- 食品感官檢驗基礎(chǔ)品評員的崗前培訓(xùn)課件
- AQ/T 2061-2018 金屬非金屬地下礦山防治水安全技術(shù)規(guī)范(正式版)
- 《網(wǎng)絡(luò)安全防護項目教程》課件項目1 系統(tǒng)基本安全防護
- 留置導(dǎo)尿法操作評分標(biāo)準(zhǔn)
- 2024年度保密教育線上培訓(xùn)考試題庫附答案(完整版)
評論
0/150
提交評論