版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
浙江省浙東北聯(lián)盟2025屆高一數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知,且點在線段的延長線上,,則點的坐標(biāo)為()A. B.C. D.2.若函數(shù)滿足且的最小值為,則函數(shù)的單調(diào)遞增區(qū)間為A. B.C. D.3.若單位向量,滿足,則向量,夾角的余弦值為()A. B.C. D.4.為了得到函數(shù)的圖象,可以將函數(shù)的圖象()A.向左平移個單位長度 B.向右平移個單位長度C.向左平移個單位長度 D.向右平移個單位長度5.曲線與直線在軸右側(cè)的交點按橫坐標(biāo)從小到大依次記為,,,,,…,則等于A. B.2C.3 D.6.已知集合,,若,則的子集個數(shù)為A.14 B.15C.16 D.327.已知函數(shù)對任意都有,則等于A.2或0 B.-2或0C.0 D.-2或28.毛主席的詩句“坐地日行八萬里”描寫的是赤道上的人即使坐在地上不動,也會因為地球自轉(zhuǎn)而每天行八萬里路程.已知我國四個南極科考站之一的昆侖站距離地球南極點約1050km,把南極附近的地球表面看作平面,則地球每自轉(zhuǎn)πA.2200km B.C.1100km D.9.已知集合M={x|1≤x<3},N={1,2},則M∩N=()A. B.C. D.10.若點關(guān)于直線的對稱點是,則直線在軸上的截距是A.1 B.2C.3 D.4二、填空題:本大題共6小題,每小題5分,共30分。11.寫出一個最小正周期為2的奇函數(shù)________12.設(shè)是定義在上且周期為2的函數(shù),在區(qū)間上,其中.若,則的值是____________.13.兩條直線與互相垂直,則______14.已知函數(shù),的最大值為3,最小值為2,則實數(shù)的取值范圍是________.15.已知定義在上的偶函數(shù),當(dāng)時,,則________16.函數(shù),的圖象恒過定點P,則P點的坐標(biāo)是_____.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知直線經(jīng)過直線與直線的交點,且與直線垂直.(1)求直線的方程;(2)若直線與圓相交于兩點,且,求的值.18.已知點及圓.(1)若直線過點且與圓心的距離為1,求直線的方程;(2)設(shè)過點的直線與圓交于兩點,當(dāng)時,求以線段為直徑的圓的方程;(3)設(shè)直線與圓交于兩點,是否存在實數(shù),使得過點的直線垂直平分弦?若存在,求出實數(shù)的值;若不存在,請說明理由19.已知角在第二象限,且(1)求的值;(2)若,且為第一象限角,求的值20.如圖,一個半徑為4米的筒車按逆時針方向每分鐘轉(zhuǎn)1圈,筒車的軸心O距水面的高度為2米.設(shè)筒車上的某個盛水筒W到水面的距離為d(單位:米)(在水面下則d為負數(shù)).若以盛水筒W剛浮出水面時開始計算時間,則d與時間t(單位:分鐘)之間的關(guān)系為.(1)求的值;(2)求盛水筒W出水后至少經(jīng)過多少時間就可到達最高點?(3)某時刻(單位:分鐘)時,盛水筒W在過O點的豎直直線的左側(cè),到水面的距離為5米,再經(jīng)過分鐘后,盛水筒W是否在水中?21.如圖,在四棱錐中,底面ABCD為平行四邊形,,平面底面ABCD,M是棱PC上的點.(1)證明:底面;(2)若三棱錐的體積是四棱錐體積的,設(shè),試確定的值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】設(shè),根據(jù)題意得出,由建立方程組求解即可.【詳解】設(shè),因為,所以即故選:C【點睛】本題主要考查了由向量共線求參數(shù),屬于基礎(chǔ)題.2、D【解析】分析:首先根據(jù)誘導(dǎo)公式和輔助角公式化簡函數(shù)解析式,之后應(yīng)用題的條件求得函數(shù)的最小正周期,求得的值,從而求得函數(shù)解析式,之后利用整體思維,借助于正弦型函數(shù)的解題思路,求得函數(shù)的單調(diào)增區(qū)間.詳解:,根據(jù)題中條件滿足且的最小值為,所以有,所以,從而有,令,整理得,從而求得函數(shù)的單調(diào)遞增區(qū)間為,故選D.點睛:該題考查的是有關(guān)三角函數(shù)的綜合問題,涉及到的知識點有誘導(dǎo)公式、輔助角公式、函數(shù)的周期以及正弦型函數(shù)的單調(diào)區(qū)間的求法,在結(jié)題的過程中,需要對各個知識點要熟記,解題方法要明確.3、A【解析】將平方可得,再利用向量夾角公式可求出.【詳解】,是單位向量,,,,即,即,解得,則向量,夾角的余弦值為.故選:A.4、D【解析】,據(jù)此可知,為了得到函數(shù)的圖象,可以將函數(shù)的圖象向右平移個單位長度.本題選擇D選項.5、B【解析】曲線與直線在軸右側(cè)的交點按橫坐標(biāo)從小到大依次記為,曲線與直線在軸右側(cè)的交點按橫坐標(biāo)轉(zhuǎn)化為根,解簡單三角方程可得對應(yīng)的橫坐標(biāo)分別為,,故選B.【思路點睛】本題主要考查三角函數(shù)的圖象以及簡單的三角方程,屬于中檔題.解答本題的關(guān)鍵是將曲線與直線在軸右側(cè)的交點按橫坐標(biāo)轉(zhuǎn)化為根,可得或,令取特殊值即可求得,從而可得.6、C【解析】根據(jù)集合的并集的概念得到,集合的子集個數(shù)有個,即16個故答案為C7、D【解析】分析:由條件可得,函數(shù)f(x)的圖象關(guān)于直線x=對稱,故f()等于函數(shù)的最值,從而得出結(jié)論詳解:由題意可得,函數(shù)f(x)的圖象關(guān)于直線x=對稱,故f()=±2,故答案為±2點睛:本題考查了函數(shù)f(x)=Asin(ωx+φ)的圖象與性質(zhì)的應(yīng)用問題,是基礎(chǔ)題目.一般函數(shù)的對稱軸為a,函數(shù)的對稱中心為(a,0).8、C【解析】利用弧長公式求解.【詳解】因為昆侖站距離地球南極點約1050km,地球每自轉(zhuǎn)π所以由弧長公式得:l=1050×π故選:C9、B【解析】根據(jù)集合交集的定義可得所求結(jié)果【詳解】∵,∴故選B【點睛】本題考查集合的交集運算,解題的關(guān)鍵是弄清兩集合交集中元素的特征,進而得到所求集合,屬于基礎(chǔ)題10、D【解析】∵點A(1,1)關(guān)于直線y=kx+b的對稱點是B(﹣3,3),由中點坐標(biāo)公式得AB的中點坐標(biāo)為,代入y=kx+b得①直線AB得斜率為,則k=2.代入①得,.∴直線y=kx+b為,解得:y=4.∴直線y=kx+b在y軸上的截距是4.故選D.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】根據(jù)奇函數(shù)性質(zhì)可考慮正弦型函數(shù),,再利用周期計算,選擇一個作答即可.【詳解】由最小正周期為2,可考慮三角函數(shù)中的正弦型函數(shù),,滿足,即是奇函數(shù);根據(jù)最小正周期,可得.故函數(shù)可以是中任一個,可取.故答案為:.12、##-0.4【解析】根據(jù)函數(shù)的周期性及可得的值,進而利用周期性即可求解的值.【詳解】解:因為是定義在上且周期為2的函數(shù),在區(qū)間上,所以,,又,即,解得,所以,故答案為:.13、【解析】先分別求出兩條直線的斜率,再利用兩條直線垂直的充要條件是斜率乘積等于,即可求出結(jié)果【詳解】直線的斜率,直線的斜率,且兩直線與互相垂直,,,解得,故答案為【點睛】本題主要考查兩直線垂直的充要條件,屬于基礎(chǔ)題.在兩條直線的斜率都存在的條件下,兩條直線垂直的充要條件是斜率乘積等于14、【解析】畫出函數(shù)的圖像,對稱軸為,函數(shù)在對稱軸的位置取得最小值2,令,可求得,或,進而得到參數(shù)范圍.【詳解】函數(shù)的圖象是開口朝上,且以直線為對稱的拋物線,當(dāng)時,函數(shù)取最小值2,令,則,或,若函數(shù)在上的最大值為3,最小值為2,則,故答案為:.15、6【解析】利用函數(shù)是偶函數(shù),,代入求值.【詳解】是偶函數(shù),.故答案6【點睛】本題考查利用函數(shù)的奇偶性求值,意在考查轉(zhuǎn)化與變形,屬于簡單題型.16、【解析】令,解得,且恒成立,所以函數(shù)的圖象恒過定點;故填.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)或.【解析】(1)由解得P的坐標(biāo),再求出直線斜率,即可求直線的方程;(2)若直線與圓:相交由垂徑定理列方程求解即可.【詳解】(1)由得所以.因為,所以,所以直線的方程為,即.(2)由已知可得:圓心到直線的距離為,因為,所以,所以,所以或.【點睛】直線與圓的位置關(guān)系常用處理方法:(1)直線與圓相切處理時要利用圓心與切點連線垂直,構(gòu)建直角三角形,進而利用勾股定理可以建立等量關(guān)系;(2)直線與圓相交,利用垂徑定理也可以構(gòu)建直角三角形;(3)直線與圓相離時,當(dāng)過圓心作直線垂線時長度最小18、(1)或;(2);(3)不存在.【解析】(1)設(shè)出直線方程,結(jié)合點到直線距離公式,計算參數(shù),即可.(2)證明得到點P為MN的中點,建立圓方程,即可.(3)將直線方程代入圓方程,結(jié)合交點個數(shù),計算a的范圍,計算直線的斜率,計算a的值,即可【詳解】(1)直線斜率存在時,設(shè)直線的斜率為,則方程為,即.又圓的圓心為,半徑,由,解得.所以直線方程為,即.當(dāng)?shù)男甭什淮嬖跁r,的方程為,經(jīng)驗證也滿足條件即直線的方程為或.(2)由于,而弦心距,所以.所以恰為的中點故以為直徑的圓的方程為.(3)把直線代入圓的方程,消去,整理得.由于直線交圓于兩點,故,即,解得.則實數(shù)的取值范圍是設(shè)符合條件的實數(shù)存在,由于垂直平分弦,故圓心必在上.所以的斜率,而,所以.由于,故不存在實數(shù),使得過點的直線垂直平分弦.【點睛】考查了點到直線距離公式,考查了圓方程計算方法,考查了直線斜率計算方法,難度偏難19、(1)(2)【解析】(1)利用同角三角函數(shù)關(guān)系可求解得,利用誘導(dǎo)公式化簡原式可得原式,代入即得解;(2)利用同角三角函數(shù)關(guān)系可得,又,利用兩角差的正弦公式,即得解【小問1詳解】因為,且在第二象限,故,所以,原式【小問2詳解】由題意有故,20、(1);(2)分鐘;(3)再經(jīng)過分鐘后盛水筒不在水中.【解析】(1)先結(jié)合題設(shè)條件得到,,求得,再利用初始值計算初相即可;(2)根據(jù)盛水筒達到最高點時,代入計算t值,再根據(jù),得到最少時間即可;(3)先計算時,根據(jù)題意,利用同角三角函數(shù)的平方關(guān)系求,再由分鐘后,進而計算d值并判斷正負,即得結(jié)果.【詳解】解:(1)由題意知,,即,所以,由題意半徑為4米,筒車的軸心O距水面的高度為2米,可得:,當(dāng)時,,代入得,,因為,所以;(2)由(1)知:,盛水筒達到最高點時,,當(dāng)時,,所以,所以,解得,因為,所以,當(dāng)時,,所以盛水筒出水后至少經(jīng)過分鐘就可達到最高點;(3)由題知:,即,由題意,盛水筒W在過O點的豎直直線的左側(cè),知,所以,所以,所以,再經(jīng)過分鐘后,所以再經(jīng)過分鐘后盛水筒不在水中.【點睛
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版房地產(chǎn)抵押貸款合同3篇
- 二零二五版智慧城市物聯(lián)網(wǎng)技術(shù)應(yīng)用合同實施指南3篇
- 二零二五年度文化產(chǎn)業(yè)短期工勞務(wù)合作合同2篇
- 二零二五年金融投資風(fēng)險兜底保障合同示范3篇
- 二零二五年度知識產(chǎn)權(quán)股權(quán)轉(zhuǎn)讓定金合同3篇
- 二零二五版智能交通系統(tǒng)-城區(qū)隔離護欄采購合同3篇
- 二零二五版?zhèn)€人戶外探險活動貸款合同擔(dān)保與安全協(xié)議3篇
- 二零二五版環(huán)保產(chǎn)業(yè)合理化建議書合同2篇
- 二零二五年度新型農(nóng)業(yè)耕地承包與流轉(zhuǎn)管理合同3篇
- 二零二五版GRc構(gòu)件生產(chǎn)、安裝與智能化管理合同3篇
- 二零二五年度無人駕駛車輛測試合同免責(zé)協(xié)議書
- 2023中華護理學(xué)會團體標(biāo)準-注射相關(guān)感染預(yù)防與控制
- PPVT幼兒語言能力測試題附答案
- JB∕T 14089-2020 袋式除塵器 濾袋運行維護技術(shù)規(guī)范
- 陜西省寶雞市各縣區(qū)鄉(xiāng)鎮(zhèn)行政村村莊村名居民村民委員會明細及行政區(qū)劃代碼
- 中華人民共和國職業(yè)分類大典電子版
- 畢業(yè)設(shè)計小型液壓機主機結(jié)構(gòu)設(shè)計與計算
- 19XR開機運行維護說明書
- 全國非煤礦山分布
- 臨床研究技術(shù)路線圖模板
- GB∕T 2099.1-2021 家用和類似用途插頭插座 第1部分:通用要求
評論
0/150
提交評論