版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆河南省扶溝縣數(shù)學高二上期末質(zhì)量檢測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若數(shù)列滿足,則數(shù)列的通項公式為()A. B.C. D.2.下列曲線中,與雙曲線有相同漸近線是()A. B.C. D.3.某研究所計劃建設(shè)n個實驗室,從第1實驗室到第n實驗室的建設(shè)費用依次構(gòu)成等差數(shù)列,已知第7實驗室比第2實驗室的建設(shè)費用多15萬元,第3實驗室和第6實驗室的建設(shè)費用共為61萬元.現(xiàn)在總共有建設(shè)費用438萬元,則該研究所最多可以建設(shè)的實驗室個數(shù)是()A.10 B.11C.12 D.134.據(jù)記載,歐拉公式是由瑞士著名數(shù)學家歐拉發(fā)現(xiàn)的,該公式被譽為“數(shù)學中的天橋”特別是當時,得到一個令人著迷的優(yōu)美恒等式,將數(shù)學中五個重要的數(shù)(自然對數(shù)的底,圓周率,虛數(shù)單位,自然數(shù)的單位和零元)聯(lián)系到了一起,有些數(shù)學家評價它是“最完美的數(shù)學公式”.根據(jù)歐拉公式,復(fù)數(shù)的虛部()A. B.C. D.5.函數(shù)的最小值為()A. B.1C.2 D.e6.已知拋物線的準線方程為,則此拋物線的標準方程為()A. B.C. D.7.等比數(shù)列的公比為,則“”是“對于任意正整數(shù)n,都有”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分又不必要條件8.若等比數(shù)列中,,,那么()A.20 B.18C.16 D.149.函數(shù)的值域為()A. B.C. D.10.若正三棱柱的所有棱長都相等,D是的中點,則直線AD與平面所成角的正弦值為A. B.C. D.11.已知F是拋物線x2=y(tǒng)的焦點,A、B是該拋物線上的兩點,|AF|+|BF|=3,則線段AB的中點到x軸的距離為()A. B.C.1 D.12.在平面直角坐標系中,已知橢圓的上、下頂點分別為、,左頂點為,左焦點為,若直線與直線互相垂直,則橢圓的離心率為A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知離心率為,且對稱軸都在坐標軸上的雙曲線C過點,過雙曲線C上任意一點P,向雙曲線C的兩條漸近線分別引垂線,垂足分別是A,B,點O為坐標原點,則四邊形OAPB的面積為______14.滕王閣,江南三大名樓之一,因初唐詩人王勃所作《滕王閣序》中的“落霞與孤鶩齊飛,秋水共長天一色”而名傳千古,流芳后世.如圖,在滕王閣旁地面上共線的三點,,處測得閣頂端點的仰角分別為,,.且米,則滕王閣高度___________米.15.數(shù)列滿足,,其前n項積為,則______16.已知等差數(shù)列中,,,則______________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓與拋物線有一個相同的焦點,且該橢圓的離心率為,(Ⅰ)求該橢圓的標準方程:(Ⅱ)求過點的直線與該橢圓交于A,B兩點,O為坐標原點,若,求的面積.18.(12分)已知函數(shù).(1)證明:;(2)若函數(shù)有兩個零點,求實數(shù)的取值范圍.19.(12分)已知橢圓的離心率為,短軸長為2(1)求橢圓的方程;(2)設(shè)過點且斜率為的直線與橢圓交于不同的兩點,,求當?shù)拿娣e取得最大值時的值20.(12分)年月日,中國向世界莊嚴宣告,中國脫貧攻堅戰(zhàn)取得了全面勝利,現(xiàn)行標準下萬農(nóng)村貧困人口全部脫貧,個貧困縣全部摘帽,萬個貧困村全部出列,區(qū)域性整體貧困得到解決,完成了消除絕對貧困的艱巨任務(wù),困擾中華民族幾千年的絕對貧困問題得到了歷史性的解決!為了鞏固脫貧成果,某農(nóng)科所實地考察,研究發(fā)現(xiàn)某脫貧村適合種植、兩種經(jīng)濟作物,可以通過種植這兩種經(jīng)濟作物鞏固脫貧成果,通過大量考察研究得到如下統(tǒng)計數(shù)據(jù):經(jīng)濟作物的畝產(chǎn)量約為公斤,其收購價格處于上漲趨勢,最近五年的價格如下表:年份編號年份單價(元/公斤)經(jīng)濟作物的收購價格始終為元/公斤,其畝產(chǎn)量的頻率分布直方圖如下:(1)若經(jīng)濟作物的單價(單位:元/公斤)與年份編號具有線性相關(guān)關(guān)系,請求出關(guān)于的回歸直線方程,并估計年經(jīng)濟作物的單價;(2)用上述頻率分布直方圖估計經(jīng)濟作物的平均畝產(chǎn)量(每組數(shù)據(jù)以區(qū)間的中點值為代表),若不考慮其他因素,試判斷年該村應(yīng)種植經(jīng)濟作物還是經(jīng)濟作物?并說明理由附:,21.(12分)已知拋物線的焦點F,C上一點到焦點的距離為5(1)求C方程;(2)過F作直線l,交C于A,B兩點,若線段AB中點的縱坐標為-1,求直線l的方程22.(10分)已知直線,圓.(1)證明:直線l與圓C相交;(2)設(shè)l與C的兩個交點分別為A、B,弦AB的中點為M,求點M的軌跡方程;(3)在(2)的條件下,設(shè)圓C在點A處的切線為,在點B處的切線為,與的交點為Q.試探究:當m變化時,點Q是否恒在一條定直線上?若是,請求出這條直線的方程;若不是,說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】由,分兩步,當求出,當時得到,兩式作差即可求出數(shù)列的通項公式;【詳解】解:因為①,當時,,當時②,①②得,所以,當時也成立,所以;故選:D2、B【解析】求出已知雙曲線的漸近線方程,逐一驗證即可.【詳解】雙曲線的漸近線方程為,而雙曲線的漸近線方程為,雙曲線的漸近線方程為,雙曲線的漸近線方程為,雙曲線的漸近線方程為.故選:B3、C【解析】根據(jù)等差數(shù)列通項公式,列出方程組,求出的值,進而求出令根據(jù)題意令,即可求解.【詳解】設(shè)第n實驗室的建設(shè)費用為萬元,其中,則為等差數(shù)列,設(shè)公差為d,則由題意可得,解得,則.令,即,解得,又,所以,,所以最多可以建設(shè)12個實驗室.故選:C.4、D【解析】由歐拉公式的定義和復(fù)數(shù)的概念進行求解.【詳解】由題意,得,則復(fù)數(shù)的虛部為.故選:D.5、B【解析】先化簡為,然后通過換元,再研究外層函數(shù)單調(diào)性,進而求得的最小值【詳解】化簡可得:令,故的最小值即為的最小值,是關(guān)于的單調(diào)遞增函數(shù),易知對求導(dǎo)可得:當時,單調(diào)遞減;當時,單調(diào)遞增則有:故選:B6、D【解析】由已知設(shè)拋物線方程為,由題意可得,求出,從而可得拋物線的方程【詳解】因為拋物線的準線方程為,所以設(shè)拋物線方程為,則,得,所以拋物線方程為,故選:D,7、D【解析】結(jié)合等比數(shù)列的單調(diào)性,根據(jù)充分必要條件的定義判斷【詳解】若,,則,,充分性不成立;反過來,若,,則時,必要性不成立;因此“”是“對于任意正整數(shù)n,都有”的既不充分也不必要條件.故選:D8、B【解析】利用等比數(shù)列的基本量進行計算即可【詳解】設(shè)等比數(shù)列的公比為,則,所以故選:B9、C【解析】根據(jù)基本不等式即可求出【詳解】因為,當且僅當時取等號,所以函數(shù)的值域為故選:C10、A【解析】建立空間直角坐標系,得到相關(guān)點的坐標后求出直線的方向向量和平面的法向量,借助向量的運算求出線面角的正弦值【詳解】取AC的中點為坐標原點,建立如圖所示的空間直角坐標系設(shè)三棱柱的棱長為2,則,∴設(shè)為平面的一個法向量,由故令,得設(shè)直線AD與平面所成角為,則,所以直線AD與平面所成角的正弦值為故選A【點睛】空間向量的引入為解決立體幾何問題提供了較好的方法,解題時首先要建立適當?shù)淖鴺讼?,得到相關(guān)點的坐標后借助向量的運算,將空間圖形的位置關(guān)系或數(shù)量關(guān)系轉(zhuǎn)化為向量的運算處理.在解決空間角的問題時,首先求出向量夾角的余弦值,然后再轉(zhuǎn)化為所求的空間角.解題時要注意向量的夾角和空間角之間的聯(lián)系和區(qū)別,避免出現(xiàn)錯誤11、B【解析】根據(jù)拋物線的方程求出準線方程,利用拋物線的定義拋物線上的點到焦點的距離等于到準線的距離,列出方程求出,的中點縱坐標,求出線段的中點到軸的距離【詳解】解:拋物線的焦點準線方程,設(shè),,,解得,線段的中點縱坐標為,線段的中點到軸的距離為,故選:B【點睛】本題考查解決拋物線上的點到焦點的距離問題,利用拋物線的定義將到焦點的距離轉(zhuǎn)化為到準線的距離,屬于基礎(chǔ)題12、C【解析】依題意,直線與直線互相垂直,,,故選二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】由離心率為,∴雙曲線為等軸雙曲線,設(shè)雙曲線方程為,可得雙曲線方程為,設(shè),則到兩漸近線的距離為,,從而可求四邊形的面積【詳解】由離心率為,∴雙曲線為等軸雙曲線,設(shè)雙曲線方程為,又雙曲線過點,,∴,故雙曲線方程為,∴漸近線方程為,設(shè),則到兩漸近線的距離為,,且,∵漸近線方程為,∴四邊形為矩形,∴四邊形的面積為故答案為:214、【解析】設(shè),由邊角關(guān)系可得,,,在和中,利用余弦定理列方程,結(jié)合可解得的值,進而可得長.【詳解】設(shè),因為,,,所以,,,.在中,,即①.,在中,,即②,因為,所以①②兩式相加可得:,解得:,則,故答案為:.15、【解析】根據(jù)數(shù)列的項的周期性,去求的值即可解決.【詳解】由,,可得,,,,,,由此可知數(shù)列的項具有周期性,且周期為4,第一周期內(nèi)的四項之積為1,所以數(shù)列的前2022項之積為故答案為:16、【解析】設(shè)等差數(shù)列的公差為,依題意得到方程,求出公差,再根據(jù)等差數(shù)列通項公式計算可得;【詳解】解:設(shè)等差數(shù)列的公差為,因為,,所以,所以,所以故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ)【解析】(Ⅰ)根據(jù)題意可以求出橢圓的焦點,再根據(jù)橢圓的離心率公式,求出的值,然后結(jié)合橢圓的關(guān)系求出,最后寫出橢圓的標準方程;(Ⅱ)根據(jù)平面向量共線定理可以得出A,B兩點橫坐標和縱坐標之間的關(guān)系,再設(shè)出直線AB方程與橢圓方程聯(lián)立,利用根與系數(shù)關(guān)系求出直線AB的斜率,最后根據(jù)三角形面積結(jié)合根與系數(shù)關(guān)系求出的面積.【詳解】(Ⅰ)由題意,設(shè)橢圓的標準方程為,由題意可得,又,,所以橢圓的標準方程為(Ⅱ)設(shè),,由得:,驗證易知直線AB的斜率存在,設(shè)直線AB的方程為聯(lián)立橢圓方程,得:,整理得:,得:,將代入得,所以的面積.【點睛】本題考查了求橢圓的標準方程,考查了利用一元二次方程根與系數(shù)關(guān)系求直線斜率和三角形面積問題,考查了數(shù)學運算能力.18、(1)證明見解析;(2).【解析】(1)令,求導(dǎo)得到函數(shù)的增區(qū)間為,減區(qū)間為,故,得到證明.(2),討論和兩種情況,計算函數(shù)的單調(diào)區(qū)間得到,解得答案.【詳解】(1)令,有,令可得,故函數(shù)的增區(qū)間為,減區(qū)間為,,故有.(2)由①當時,,此時函數(shù)的減區(qū)間為,沒有增區(qū)間;②當時,令可得,此時函數(shù)的增區(qū)間為,減區(qū)間為.若函數(shù)有兩個零點,必須且,可得,此時,又由,當時,由(1)有,取時,顯然有,當時,故函數(shù)有兩個零點時,實數(shù)的取值范圍為.【點睛】本題考查了利用導(dǎo)數(shù)證明不等式,根據(jù)零點求參數(shù),意在考查學生的計算能力和應(yīng)用能力.19、(1);(2).【解析】(1)由短軸長得,由離心率處也的關(guān)系,從而可求得,得橢圓方程;(2)設(shè),,直線的方程為,代入橢圓方程應(yīng)用韋達定理得,由弦長公式得弦長,求出原點到直線的距離,得出三角形面積為的函數(shù),用換元法,基本不等式求得最大值,得值【詳解】解:(1)由題意得,,所以,,橢圓的方程為(2)直線的方程為,代入橢圓的方程,整理得由題意,,設(shè),則,弦長,點到直線的距離,所以的面積,令,則,當且僅當時取等號.所以,對應(yīng)的,可解得,滿足題意20、(1),元/公斤;(2)應(yīng)該種植經(jīng)濟作物;理由見解析【解析】(1)利用表格數(shù)據(jù)求出中心點值,再利用最小二乘法求出回歸直線方程,進而利用所求方程進行預(yù)測;(2)先利用頻率分布直方圖的每個小矩形面積之和為1求得值,再利用平均值公式求其平均值,再比較兩種作物的畝產(chǎn)量進行求解.【詳解】(1),,則關(guān)于回歸直線方程為當時,,即估計年經(jīng)濟作物的單價為元/公斤(2)利用頻率和為得:,所以經(jīng)濟作物的畝產(chǎn)量的平均值為:,故經(jīng)濟作物畝產(chǎn)值為元,經(jīng)濟作物畝產(chǎn)值為元,應(yīng)該種植經(jīng)濟作物21、(1);(2).【解析】(1)由拋物線的定義,結(jié)合已知有求p,寫出拋物線方程.(2)由題意設(shè)直線l為,聯(lián)立拋物線方程,應(yīng)用韋達定理可得,由中點公式有,進而求k值,寫出直線方程.【詳解】(1)由題意知:拋物線的準線為,則,可得,∴C的方程為.(2)由(1)知:,由題意知:直線l的斜率存在,令其方程為,∴聯(lián)立拋物線方程,得:,,若,則,而線段AB中點的縱坐標為-1,∴,即,得,∴直線l的方程為.【點睛】關(guān)鍵點點睛:(1)利用拋物線定義求參數(shù),寫出拋物線方程;(2)由直線與拋物線相交,以及相交弦的中點坐標值,應(yīng)用韋達定理、中點公式求直線斜率,并寫出直線方程.22、(1)證明見解析;(2);(3)點Q恒在直線上,理由見解析.【解析】(1)求出直線過定點,得到在圓內(nèi)部,故證明直線l與圓C相交;(2)設(shè)出點,利用垂直得到等量關(guān)系,整理后即為軌跡方程;(3)利用Q、A、B、C四點共圓,得到此圓方程,聯(lián)立
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年廈門房屋租賃合同范文(二篇)
- 2024年壓瘡風險評估與報告制度評估(二篇)
- 2024年安全生產(chǎn)月工作計劃范文(二篇)
- 2024年合伙合同參考模板(四篇)
- 2024年小學實習班主任工作計劃范本(二篇)
- 2024年小學工作計劃范文(三篇)
- 2024年學校財產(chǎn)物資管理制度范例(六篇)
- 2024年土地轉(zhuǎn)包合同參考模板(二篇)
- 2024年小學教研工作計劃樣本(五篇)
- 2024年客服工作總結(jié)參考(四篇)
- 小學四年級牛津4AM4U2
- SB/T 10851-2012會議中心運營服務(wù)規(guī)范
- GB/T 20948-2007農(nóng)林拖拉機后視鏡技術(shù)要求
- 綜合驗光儀教學
- 貧血的診療與護理考核試題及答案
- 前置胎盤詳解課件
- 浙教版勞動五年級上冊項目三 任務(wù)一《探索生活中的LED燈》課件
- 南京市小學一年級語文上學期期中試卷
- joyoj集控站防誤系統(tǒng)介紹課件
- 食安員抽考必備知識考試題庫(含答案)
- CIP清洗技術(shù)課件
評論
0/150
提交評論