版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆云南省曲靖市羅平縣第一中學(xué)高二上數(shù)學(xué)期末綜合測(cè)試試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知梯形中,,且,則的值為()A. B.C. D.2.某產(chǎn)品的銷售收入(萬(wàn)元)是產(chǎn)量x(千臺(tái))的函數(shù),且函數(shù)解析式為,生產(chǎn)成本(萬(wàn)元)是產(chǎn)量x(千臺(tái))的函數(shù),且函數(shù)解析式為,要使利潤(rùn)最大,則該產(chǎn)品應(yīng)生產(chǎn)()A.6千臺(tái) B.7千臺(tái)C.8千臺(tái) D.9千臺(tái)3.已知數(shù)列的通項(xiàng)公式是,則()A10100 B.-10100C.5052 D.-50524.已知雙曲線:的左、右焦點(diǎn)分別為,,點(diǎn)在雙曲線上.若為鈍角三角形,則的取值范圍是A. B.C. D.5.如圖,空間四邊形中,,,,且,,則()A. B.C. D.6.已知雙曲線的離心率為,則雙曲線C的漸近線方程為()A. B.C. D.7.已知為等差數(shù)列,為其前n項(xiàng)和,,則下列和與公差無關(guān)的是()A. B.C. D.8.已知向量,且與互相垂直,則k=()A. B.C. D.9.已知命題:若直線的方向向量與平面的法向量垂直,則;命題:等軸雙曲線的離心率為,則下列命題是真命題的是()A. B.C. D.10.已知直線和互相垂直,則實(shí)數(shù)的值為()A. B.C.或 D.11.拋物線的焦點(diǎn)坐標(biāo)A. B.C. D.12.若雙曲線經(jīng)過點(diǎn),且它的兩條漸近線方程是,則雙曲線的方程是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知正三棱柱中,底面積為,一個(gè)側(cè)面的周長(zhǎng)為,則正三棱柱外接球的表面積為______.14.美學(xué)四大構(gòu)件是:史詩(shī)、音樂、造型(繪畫、建筑等)和數(shù)學(xué).素描是學(xué)習(xí)繪畫的必要一步,它包括明暗素描和結(jié)構(gòu)素描,而學(xué)習(xí)幾何體結(jié)構(gòu)素描是學(xué)習(xí)素描最重要的一步.某同學(xué)在畫切面圓柱體(用與圓柱底面不平行的平面去截圓柱,底面與截面之間的部分叫做切面圓柱體,原圓柱的母線被截面所截剩余的部分稱為切面圓柱體的母線)的過程中,發(fā)現(xiàn)“切面”是一個(gè)橢圓,若切面圓柱體的最長(zhǎng)母線與最短母線所確定的平面截切面圓柱體得到的截面圖形是有一個(gè)底角為45°的直角梯形(如圖所示),則該橢圓的離心率為_____.15.已知數(shù)列的前項(xiàng)和,則該數(shù)列的首項(xiàng)__________,通項(xiàng)公式__________.16.已知,分別是雙曲線的左、右焦點(diǎn),P是其一條漸近線上的一點(diǎn),且以為直徑的圓經(jīng)過點(diǎn)P,則的面積為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓上的點(diǎn)到橢圓焦點(diǎn)的最大距離為3,最小距離為1(1)求橢圓的標(biāo)準(zhǔn)方程;(2)已知,分別是橢圓的左右頂點(diǎn),是橢圓上異于,的任意一點(diǎn),直線,分別交軸于點(diǎn),,求的值18.(12分)已知圓C經(jīng)過點(diǎn),,且圓心C在直線上(1)求圓C的標(biāo)準(zhǔn)方程;(2)過點(diǎn)向圓C引兩條切線PD,PE,切點(diǎn)分別為D,E,求切線PD,PE的方程,并求弦DE的長(zhǎng)19.(12分)如圖,在三棱錐中,,,記二面角的平面角為(1)若,,求三棱錐的體積;(2)若M為BC的中點(diǎn),求直線AD與EM所成角的取值范圍20.(12分)已知直線經(jīng)過拋物線的焦點(diǎn),且與拋物線相交于兩點(diǎn).(1)若直線的斜率為1,求;(2)若,求直線的方程.21.(12分)如圖,在梯形中,,四邊形為矩形,且平面,.(1)求證:;(2)點(diǎn)在線段(不含端點(diǎn))上運(yùn)動(dòng),設(shè)直線與平面所成角為,求的取值范圍.22.(10分)已知數(shù)列是等差數(shù)列,為其前n項(xiàng)和,,(1)求的通項(xiàng)公式;(2)若,求證:為等比數(shù)列
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】根據(jù)共線定理、平面向量的加法和減法法則,即可求得,進(jìn)而求出的值,即可求出結(jié)果.【詳解】因?yàn)椋杂?,所?故選:D.2、A【解析】構(gòu)造利潤(rùn)函數(shù),求導(dǎo),判斷單調(diào)性,求得最大值處對(duì)應(yīng)的自變量即可.【詳解】設(shè)利潤(rùn)為y萬(wàn)元,則,∴.令,解得(舍去)或,經(jīng)檢驗(yàn)知既是函數(shù)的極大值點(diǎn)又是函數(shù)的最大值點(diǎn),∴應(yīng)生產(chǎn)6千臺(tái)該產(chǎn)品.故選:A【點(diǎn)睛】利用導(dǎo)數(shù)求函數(shù)在某區(qū)間上最值的規(guī)律:(1)若函數(shù)在區(qū)間上單調(diào)遞增或遞減,與一個(gè)為最大值,一個(gè)為最小值(2)若函數(shù)在閉區(qū)間上有極值,要先求出上的極值,與,比較,最大的是最大值,最小的是最小值,可列表完成(3)函數(shù)在區(qū)間上有唯一一個(gè)極值點(diǎn),這個(gè)極值點(diǎn)就是最大(或小)值點(diǎn),此結(jié)論在導(dǎo)數(shù)的實(shí)際應(yīng)用中經(jīng)常用到3、D【解析】根據(jù)已知條件,用并項(xiàng)求和法即可求得結(jié)果.【詳解】∵∴∴.故選:D.4、C【解析】根據(jù)雙曲線的幾何性質(zhì),結(jié)合余弦定理分別討論當(dāng)為鈍角時(shí)的取值范圍,根據(jù)雙曲線的對(duì)稱性,可以只考慮點(diǎn)在雙曲線上第一象限部分即可.【詳解】由題:雙曲線:的左、右焦點(diǎn)分別為,,點(diǎn)在雙曲線上,必有,若為鈍角三角形,根據(jù)雙曲線的對(duì)稱性不妨考慮點(diǎn)在雙曲線第一象限部分:當(dāng)為鈍角時(shí),在中,設(shè),有,,即,,所以;當(dāng)時(shí),所在直線方程,所以,,,根據(jù)圖象可得要使,點(diǎn)向右上方移動(dòng),此時(shí),綜上所述:的取值范圍是.故選:C【點(diǎn)睛】此題考查雙曲線中焦點(diǎn)三角形相關(guān)計(jì)算,關(guān)鍵在于根據(jù)幾何意義結(jié)合特殊情況分類討論,體現(xiàn)數(shù)形結(jié)合思想.5、C【解析】根據(jù)空間向量的線性運(yùn)算即可求解.【詳解】因?yàn)椋忠驗(yàn)?,,所?故選:C6、B【解析】根據(jù)a的值和離心率可求得b,從而求得漸近線方程.【詳解】由雙曲線的離心率為,知,則,即有,故,所以雙曲線C的漸近線方程為,即,故選:B.7、C【解析】依題意根據(jù)等差數(shù)列的通項(xiàng)公式可得,再根據(jù)等差數(shù)列前項(xiàng)和公式計(jì)算可得;【詳解】解:因?yàn)椋?,即,所以,,,,故選:C8、C【解析】利用垂直的坐標(biāo)表示列方程求解即可.【詳解】由與互相垂直得,解得故選:C.9、D【解析】先判斷出p、q的真假,再分別判斷四個(gè)選項(xiàng)的真假.【詳解】因?yàn)椤叭糁本€的方向向量與平面的法向量垂直,則或”,所以p為假命題;對(duì)于等軸雙曲線,,所以離心率為,所以q為真命題.所以假命題,故A錯(cuò)誤;為假命題,故B錯(cuò)誤;為假命題,故C錯(cuò)誤;為真命題,故D正確.故選:D10、B【解析】由兩直線垂直可得出關(guān)于實(shí)數(shù)的等式,求解即可.【詳解】由已知可得,解得.故選:B.11、B【解析】由拋物線方程知焦點(diǎn)在x軸正半軸,且p=4,所以焦點(diǎn)坐標(biāo)為,所以選B12、A【解析】根據(jù)雙曲線漸近線方程設(shè)出方程,再由其過的點(diǎn)即可求解.【詳解】漸近線方程是,設(shè)雙曲線方程為,又因?yàn)殡p曲線經(jīng)過點(diǎn),所以有,所以雙曲線方程為,化為標(biāo)準(zhǔn)方程為.故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】首先由條件求出底面邊長(zhǎng)和高,然后設(shè)、分別為上、下底面的的中心,連接,設(shè)的中點(diǎn)為,則點(diǎn)為正三棱柱外接球的球心,然后求出的長(zhǎng)度即可.【詳解】如圖所示,設(shè)底面邊長(zhǎng)為,則底面面積為,所以,因此等邊三角形的高為:,因?yàn)橐粋€(gè)側(cè)面的周長(zhǎng)為,所以設(shè)、分別為上、下底面的的中心,連接,設(shè)的中點(diǎn)為則點(diǎn)為正三棱柱外接球的球心,連接、則在直角三角形中,即外接球的半徑為,所以外接球的表面積為,故答案為:【點(diǎn)睛】關(guān)鍵點(diǎn)睛:求幾何體的外接球半徑的關(guān)鍵是根據(jù)幾何體的性質(zhì)找出球心的位置.14、【解析】設(shè)圓柱的底面半徑為,由題意知,,橢圓的長(zhǎng)軸長(zhǎng),短軸長(zhǎng)為,可以求出的值,即可得離心率.【詳解】設(shè)圓柱的底面半徑為,依題意知,最長(zhǎng)母線與最短母線所在截面如圖所示從而因此在橢圓中長(zhǎng)軸長(zhǎng),短軸長(zhǎng),,故答案為:15、①.;②..【解析】空一:利用代入法直接進(jìn)行求解即可;空二:利用之間的關(guān)系進(jìn)行求解即可.【詳解】空一:;空二:當(dāng)時(shí),,顯然不適合上式,所以,故答案為:;16、【解析】先得出漸近線方程和圓的方程,然后解出點(diǎn)P的縱坐標(biāo),進(jìn)而求出面積.【詳解】由題意,漸近線方程為:,,圓的方程為:,聯(lián)立:,所以.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)-1.【解析】(1)根據(jù)橢圓的性質(zhì)進(jìn)行求解即可;(2)根據(jù)直線的方程,結(jié)合平面向量數(shù)量積的坐標(biāo)表示公式進(jìn)行求解即可.【小問1詳解】由題意得,,,所以,橢圓.【小問2詳解】由題意可知,,設(shè),則,直線,直線分別令得,,,.【點(diǎn)睛】關(guān)鍵點(diǎn)睛:運(yùn)用平面向量數(shù)量積的坐標(biāo)表示公式進(jìn)行求解是解題的關(guān)鍵.18、(1)(2)或,【解析】(1)設(shè)圓心,根據(jù)圓心在直線上及圓過兩點(diǎn)建立方程求解即可;(2)分切線的斜率存在與不存在分類討論,利用圓心到切線的距離等于半徑求解,再根據(jù)圓的切線的幾何性質(zhì)求弦長(zhǎng)即可.【小問1詳解】設(shè)圓心,因?yàn)閳A心C在直線上,所以①因?yàn)锳,B是圓上的兩點(diǎn),所以,所以,即②聯(lián)立①②,解得,所以圓C的半徑,所以圓C的標(biāo)準(zhǔn)方程為【小問2詳解】若過點(diǎn)P的切線斜率不存在,則切線方程為若過點(diǎn)P的切線斜率存在,設(shè)為k,則切線方程為,即由,解得,所以切線方程為綜上,過點(diǎn)P的圓C的切線方程為或設(shè)PC與DE交于點(diǎn)F,因?yàn)?,,PC垂直平分DE,所以,所以所以19、(1)(2)【解析】(1)作出輔助線,找到二面角的平面角,利用余弦定理求出,求出底面積和高,進(jìn)而求出三棱錐的體積;(2)利用空間基底表達(dá)出,結(jié)合第一問結(jié)論求出,從而求出答案.【小問1詳解】取AC的中點(diǎn)F,連接FD,F(xiàn)E,由BC=2,則,故DF⊥AC,EF⊥AC,故∠DFE即為二面角的平面角,即,連接DE,作DH⊥FE,因?yàn)椋云矫鍰EF,因?yàn)镈H平面DEF,所以AC⊥DH,因?yàn)?,所以DH⊥平面ABC,因?yàn)?,由勾股定理得:,,又,由勾股定理逆定理可知,AE⊥CE,且∠BAC=,,在△ABC中,由余弦定理得:,解得:或(舍去),則,因?yàn)?,,所以△DEF為等邊三角形,則,故三棱錐的體積;【小問2詳解】設(shè),則,,由(1)知:,,取為空間中的一組基底,則,由第一問可知:,則其中,且,,故,由第一問可知,又是的中點(diǎn),所以,所以,因?yàn)槿忮F中,所以,所以,故直線AD與EM所成角范圍為.【點(diǎn)睛】針對(duì)于立體幾何中角度范圍的題目,可以建立空間直角坐標(biāo)系來進(jìn)行求解,若不容易建立坐標(biāo)系時(shí),也可以通過基底表達(dá)出各個(gè)向量,進(jìn)而求出答案.20、(1)8(2)【解析】(1)設(shè),由,進(jìn)而結(jié)合拋物線的定義,將點(diǎn)到焦點(diǎn)的距離轉(zhuǎn)化為到準(zhǔn)線的距離,最后求得答案;(2)由,所以,設(shè)出直線方程并代入拋物線方程,進(jìn)而結(jié)合根與系數(shù)的關(guān)系求得答案.【小問1詳解】設(shè),拋物線的準(zhǔn)線方程為:,因?yàn)?,由拋物線定義可知,.直線,代入拋物線方程化簡(jiǎn)得:,則,所以.【小問2詳解】設(shè),代入拋物線方程化簡(jiǎn)得:,所以,因?yàn)?,所以,于是則直線的方程為:.21、(1)證明見解析(2)【解析】(1)過作,垂足為,利用正余弦定理可證,再利用線線垂足證明線面垂直,進(jìn)而可得證;(2)以為坐標(biāo)原點(diǎn),分別以,,所在直線為,,軸建立空間直角坐標(biāo)系,利用坐標(biāo)法求線面夾角的正弦值.【小問1詳解】證明:由已知可得四邊形是等腰梯形,過作,垂足為,則,在中,,則,可得,在中,由余弦定理可得,,則,,又平面,平面,,,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度二零二五年度豪華別墅租賃定金及維護(hù)協(xié)議
- 二零二五年度理發(fā)店轉(zhuǎn)讓合同-附帶店鋪裝修及經(jīng)營(yíng)策略指導(dǎo)
- 二零二五年度砂石料運(yùn)輸安全培訓(xùn)及應(yīng)急預(yù)案協(xié)議
- 基于大數(shù)據(jù)的小學(xué)數(shù)學(xué)教育分析
- 提升安保措施保障智慧旅游出行安全
- 專業(yè)育嬰師服務(wù)合同
- XX省重點(diǎn)水電工程擴(kuò)建項(xiàng)目合同2025
- 個(gè)人股權(quán)轉(zhuǎn)讓合同書
- 產(chǎn)品售后保養(yǎng)服務(wù)合同樣本
- 個(gè)人借款抵押存單合同范本
- 2024年公安機(jī)關(guān)理論考試題庫(kù)附答案【考試直接用】
- 課題申報(bào)參考:共同富裕進(jìn)程中基本生活保障的內(nèi)涵及標(biāo)準(zhǔn)研究
- 2025年浙江嘉興桐鄉(xiāng)市水務(wù)集團(tuán)限公司招聘10人高頻重點(diǎn)提升(共500題)附帶答案詳解
- 食品企業(yè)如何做好蟲鼠害防控集
- 2025中國(guó)聯(lián)通北京市分公司春季校園招聘高頻重點(diǎn)提升(共500題)附帶答案詳解
- 康復(fù)醫(yī)學(xué)科患者隱私保護(hù)制度
- 環(huán)保工程信息化施工方案
- 狂犬病暴露后預(yù)防處置
- 農(nóng)信社運(yùn)營(yíng)主管述職報(bào)告【三篇】
- 48個(gè)國(guó)際音標(biāo)表(打印版)已整理
- 建標(biāo) 198-2022 城市污水處理工程項(xiàng)目建設(shè)標(biāo)準(zhǔn)
評(píng)論
0/150
提交評(píng)論