版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
河北省磁縣滏濱中學(xué)2025屆高二上數(shù)學(xué)期末達標(biāo)檢測試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設(shè),若函數(shù),有大于零的極值點,則A. B.C. D.2.如圖,在長方體中,,,則直線和夾角余弦值為()A. B.C. D.3.十二平均律是我國明代音樂理論家和數(shù)學(xué)家朱載堉發(fā)明的.明萬歷十二年(公元1584年),他寫成《律學(xué)新說》,提出了十二平均律的理論.十二平均律的數(shù)學(xué)意義是:在1和2之間插入11個正數(shù),使包含1和2的這13個數(shù)依次成遞增的等比數(shù)列.依此規(guī)則,插入的第四個數(shù)應(yīng)為()A. B.C. D.4.對任意實數(shù)k,直線與圓的位置關(guān)系是()A.相交 B.相切C.相離 D.與k有關(guān)5.已知點為直線上任意一點,為坐標(biāo)原點.則以為直徑的圓除過定點外還過定點()A. B.C. D.6.在數(shù)列中,,則等于A. B.C. D.7.在數(shù)列中抽取部分項(按原來的順序)構(gòu)成一個新數(shù)列,記為,再在數(shù)列插入適當(dāng)?shù)捻棧顾鼈円黄鹉軜?gòu)成一個首項為1,公比為3的等比數(shù)列.若,則數(shù)列中第項前(不含)插入的項的和最小為()A.30 B.91C.273 D.8208.在中,已知,則的形狀是()A.等腰三角形 B.直角三角形C.等腰直角三角形 D.正三角形9.已知在一次降雨過程中,某地降雨量(單位:mm)與時間t(單位:min)的函數(shù)關(guān)系可表示為,則在時的瞬時降雨強度為()mm/min.A. B.C.20 D.40010.命題;命題.則A.“或”為假 B.“且”為真C.真假 D.假真11.如果命題為真命題,為假命題,那么()A.命題,都是真命題 B.命題,都是假命題C.命題,至少有一個是真命題 D.命題,只有一個是真命題12.點到直線的距離為A.1 B.2C.3 D.4二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)函數(shù)的導(dǎo)數(shù)為,且,則___________14.某商場對華為手機近28天的日銷售情況進行統(tǒng)計,得到如下數(shù)據(jù),t36811ym357利用最小二乘法得到日銷售量y(百部)與時間t(天)的線性回歸方程為,則表格中的數(shù)據(jù)___________.15.四棱錐中,底面是一個平行四邊形,,,,則四棱錐體積為_______16.雙曲線的右焦點到C的漸近線的距離為,則C漸近線方程為______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的左、右焦點分別為,若焦距為4,點P是橢圓上與左、右頂點不重合的點,且的面積最大值.(1)求橢圓的方程;(2)過點的直線交橢圓于點、,且滿足(為坐標(biāo)原點),求直線的方程.18.(12分)在平面直角坐標(biāo)系內(nèi),橢圓E:過點,離心率為(1)求E的方程;(2)設(shè)直線(k∈R)與橢圓E交于A,B兩點,在y軸上是否存在定點M,使得對任意實數(shù)k,直線AM,BM的斜率乘積為定值?若存在,求出點M的坐標(biāo);若不存在,說明理由19.(12分)“既要金山銀山,又要綠水青山”.濱江風(fēng)景區(qū)在一個直徑為100米的半圓形花園中設(shè)計一條觀光線路(如圖所示).在點與圓弧上的一點(不同于A,B兩點)之間設(shè)計為直線段小路,在直線段小路的兩側(cè)(注意是兩側(cè))種植綠化帶;再從點到點設(shè)計為沿弧的弧形小路,在弧形小路的內(nèi)側(cè)(注意是一側(cè))種植綠化帶(注:小路及綠化帶的寬度忽略不計).(1)設(shè)(弧度),將綠化帶總長度表示為的函數(shù);(2)試確定的值,使得綠化帶總長度最大.(弧度公式:,其中為弧所對的圓心角)20.(12分)如圖,在幾何體ABCEFG中,四邊形ACGE為平行四邊形,為等邊三角形,四邊形BCGF為梯形,H為線段BF的中點,,,,,,.(1)求證:平面平面BCGF;(2)求平面ABC與平面ACH夾角的余弦值.21.(12分)設(shè)拋物線的焦點為,點在拋物線上,且,橢圓右焦點也為,離心率為(1)求拋物線方程和橢圓方程;(2)若不經(jīng)過的直線與拋物線交于、兩點,且(為坐標(biāo)原點),直線與橢圓交于、兩點,求面積的最大值22.(10分)請你設(shè)計一個包裝盒,如圖所示,是邊長為的正方形硬紙片,切去陰影部分所示的四個全等的等腰直角三角形,再沿虛線折起,使得四個點重合于圖中的點,正好形成一個長方體形狀的包裝盒,、在上是被切去的等腰直角三角形斜邊的兩個端點,設(shè)(1)求包裝盒的容積關(guān)于的函數(shù)表達式,并求出函數(shù)的定義域;(2)當(dāng)為多少時,包裝盒的容積最大?最大容積是多少?
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】設(shè),則,若函數(shù)在x∈R上有大于零的極值點即有正根,當(dāng)有成立時,顯然有,此時.由,得參數(shù)a的范圍為.故選B考點:利用導(dǎo)數(shù)研究函數(shù)的極值2、D【解析】如圖建立空間直角坐標(biāo)系,分別求出的坐標(biāo),由空間向量夾角公式即可求解.【詳解】如圖:以為原點,分別以,,所在的直線為,,軸建立空間直角坐標(biāo)系,則,,,,所以,,所以,所以直線和夾角的余弦值為,故選:D.3、C【解析】先求出等比數(shù)列的公比,再由等比數(shù)列的通項公式即可求解.【詳解】用表示這個數(shù)列,依題意,,則,,第四個數(shù)即.故選:C.4、A【解析】判斷直線恒過定點,可知定點在圓內(nèi),即可判斷直線與圓的位置關(guān)系.【詳解】由可知,即該圓的圓心坐標(biāo)為,半徑為,由可知,則該直線恒過定點,將點代入圓的方程可得,則點在圓內(nèi),則直線與圓的位置關(guān)系為相交.故選:.5、D【解析】設(shè)垂直于直線,可知圓恒過垂足;兩條直線方程聯(lián)立可求得點坐標(biāo).【詳解】設(shè)垂直于直線,垂足為,則直線方程為:,由圓的性質(zhì)可知:以為直徑的圓恒過點,由得:,以為直徑的圓恒過定點.故選:D.6、D【解析】分析:已知逐一求解詳解:已知逐一求解.故選D點睛:對于含有的數(shù)列,我們看作擺動數(shù)列,往往逐一列舉出來觀察前面有限項的規(guī)律7、C【解析】先根據(jù)等比數(shù)列的通項公式得到,列出數(shù)列的前6項,將其中是數(shù)列的項的所有數(shù)去掉即可求解.【詳解】因為是以1為首項、3為公比的等比數(shù)列,所以,則由,得,即數(shù)列中前6項分別為:1、3、9、27、81、243,其中1、9、81是數(shù)列的項,3、27、243不是數(shù)列的項,且,所以數(shù)列中第7項前(不含)插入的項的和最小為.故選:C.8、B【解析】利用誘導(dǎo)公式、兩角和的正弦公式化簡已知條件,由此判斷出三角形的形狀.【詳解】由,得,得,由于,所以,所以.故選:B9、B【解析】對題設(shè)函數(shù)求導(dǎo),再求時對應(yīng)的導(dǎo)數(shù)值,即可得答案.【詳解】由題設(shè),,則,所以在時的瞬時降雨強度為mm/min.故選:B10、D【解析】命題:可能為0,不為0,假命題,命題:,為真命題,所以“或”為真命題,“且”為假命題.選D.11、D【解析】由命題為真命題,可判斷二者至少有一個為真命題,由為假命題,可判斷二者至少有一個為假命題,由此可得答案.【詳解】命題為真命題,說明二者至少有一個為真命題,為假命題,說明二者至少有一個為假命題,綜合上述,可知命題,只有一個是真命題,故選:D12、B【解析】直接利用點到直線的距離公式得到答案.【詳解】,答案為B【點睛】本題考查了點到直線的距離公式,屬于簡單題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】,而,所以,,故填:.考點:導(dǎo)數(shù)14、1【解析】根據(jù)已知條件,求出,的平均值,再結(jié)合線性回歸方程過樣本中心,即可求解【詳解】解:由表中數(shù)據(jù)可得,,,線性回歸方程為,,解得故答案為:115、【解析】計算,,得到底面,計算,,計算體積得到答案.【詳解】由,,所以底面,,故,體積為.故答案為:16.16、【解析】根據(jù)給定條件求出雙曲線漸近線,再用點到直線的距離公式計算作答【詳解】雙曲線的漸近線為:,即,依題意,,即,解得,所以C漸近線方程為.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)或【解析】(1)根據(jù)焦距求出,利用面積最大值,得到求出,從而得到,求出橢圓方程;(2)分直線斜率存在和斜率不存在,結(jié)合題干條件得到,進而求出直線方程.【小問1詳解】∵∴,又的面積最大值,則,所以,從而,,故橢圓的方程為:;【小問2詳解】①當(dāng)直線的斜率存在時,設(shè),代入③整理得,設(shè)、,則,所以,點到直線的距離因為,即,又由,得,所以,.而,,即,解得:,此時;②當(dāng)直線的斜率不存在時,,直線交橢圓于點、.也有,經(jīng)檢驗,上述直線均滿足,綜上:直線的方程為或.【點睛】圓錐曲線中,有關(guān)向量的題目,要結(jié)合條件選擇不同的方法,一般思路有轉(zhuǎn)化為三角形面積,或者線段的比,或者由向量得到共線等.18、(1)(2)存在,或者【解析】(1)由離心率和橢圓經(jīng)過的點列出方程組,求出,得到橢圓方程;(2)假設(shè)存在,設(shè)出直線,聯(lián)立橢圓,利用韋達定理得到兩根之和,兩根之積,結(jié)合斜率乘積為定值得到關(guān)于的方程,求出答案.【小問1詳解】由題可得,,①由,得,即,則,②將②代入①,解得,,故E的方程為【小問2詳解】設(shè)存在點滿足條件記,由消去y,得.顯然,判別式>0,所以,,于是===上式為定值,當(dāng)且僅當(dāng),解得或此時,或所以,存在定點或者滿足條件19、(1);(2).【解析】(1)在直角三角形中,求出,在扇形中利用弧長公式求出弧的長度,則可得函數(shù);(2)利用導(dǎo)數(shù)可求得結(jié)果.【詳解】(1)如圖,連接在直角三角形中,所以由于則弧的長為(2)由(1)可知,令得,因為所以,當(dāng)單調(diào)遞增,當(dāng)單調(diào)遞減,所以當(dāng)時,使得綠化帶總長度最大.【點睛】關(guān)鍵點點睛:仔細審題,注意題目中的關(guān)鍵詞“兩側(cè)”和“一側(cè)”是解題關(guān)鍵.20、(1)證明見解析(2)【解析】(1)在中,由正弦定理知可知,利用三角形內(nèi)角和可知即,又因為,再根據(jù)面面垂直的判定定理,即可證明結(jié)果;(2)取BC中點O,由(1)得:平面BCGF,,以O(shè)為原點,OB,OH,OA所在直線分別為x軸、y軸、z軸,建立空間直角坐標(biāo)系,利用空間向量求二面角,即可求出結(jié)果.【小問1詳解】證明:(1)在中,由正弦定理知:解得因為,所以又因為,所以所以又因為,所以直線平面ABC又因為平面BCGF所以平面平面BCGF【小問2詳解】解:取BC中點O,連結(jié)OA,OH,由(1)得:平面BCGF,則以O(shè)為原點,OB,OH,OA所在直線分別為x軸、y軸、z軸,建立如圖所示的空間直角坐標(biāo)系在中,則,,平面ABC的一個法向量為設(shè)平面ACH的一個法向量為因為,所以,取,則設(shè)平面APD與平面PDF夾角為,所以.21、(1)拋物線方程為,橢圓方程為(2)【解析】(1)由,可得,繼而可得,故,再利用離心率,以及,即得解;(2)設(shè)直線方程為,與拋物線聯(lián)立,,結(jié)合韋達定理可得,再與橢圓聯(lián)立,,韋達定理代入,結(jié)合均值不等式即得解【小問1詳解】由題意,解得:,故,,,,,所以拋物線方程為,橢圓方程為【小問2詳解】設(shè)直線方程為,由消去得,,設(shè),,則因,所以或(舍去),所以直線方程為由,消去得,設(shè),,則設(shè)直線
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025屆廣州市語文高三第一學(xué)期期末質(zhì)量檢測試題含解析
- 河北省景縣中學(xué)2025屆生物高一第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析
- 2025屆重慶市第三十中學(xué)數(shù)學(xué)高三上期末質(zhì)量跟蹤監(jiān)視模擬試題含解析
- 2025屆山東省濟寧市嘉祥一中高三數(shù)學(xué)第一學(xué)期期末經(jīng)典模擬試題含解析
- 河南省安陽市林州一中2025屆高三生物第一學(xué)期期末調(diào)研試題含解析
- 云南省迪慶2025屆生物高一第一學(xué)期期末統(tǒng)考模擬試題含解析
- 山東省濟南市長清第一中學(xué)2025屆高二上生物期末達標(biāo)檢測試題含解析
- 2025屆宜賓市重點中學(xué)生物高三上期末統(tǒng)考模擬試題含解析
- 2025屆上海市香山中學(xué)高二生物第一學(xué)期期末綜合測試模擬試題含解析
- 江西省上饒市重點中學(xué)2025屆高二上數(shù)學(xué)期末綜合測試模擬試題含解析
- ZZ031 園林微景觀設(shè)計與制作賽項賽題-2023年全國職業(yè)院校技能大賽擬設(shè)賽項賽題完整版(10套)
- 醫(yī)院各部門科室崗位職責(zé)
- GB/T 8151.13-2012鋅精礦化學(xué)分析方法第13部分:鍺量的測定氫化物發(fā)生-原子熒光光譜法和苯芴酮分光光度法
- GB/T 41121-2021玻璃水滑道安全技術(shù)要求
- 2023年遼寧鐵道職業(yè)技術(shù)學(xué)院高職單招(英語)試題庫含答案解析
- 犯罪學(xué)全套教學(xué)課件
- RPA初級考試試題附答案
- 2021年國開電大職業(yè)與人生形考任務(wù)二答案
- 語文 名著閱讀 《 儒林外史》課件
- 夜校班成人國語考試試卷考卷
- BRCGS食品安全全球標(biāo)準第9版管理手冊及全套程序文件
評論
0/150
提交評論