版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
江蘇省蘇州五中2025屆數(shù)學高二上期末調(diào)研模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.數(shù)列,,,,…,是其第()項A.17 B.18C.19 D.202.已知曲線的方程為,則下列說法正確的是()①曲線關于坐標原點對稱;②曲線是一個橢圓;③曲線圍成區(qū)域的面積小于橢圓圍成區(qū)域的面積.A.① B.①②C.③ D.①③3.已知函數(shù)的導數(shù)為,且,則()A. B.C.1 D.4.已知點是雙曲線的左、右焦點,以線段為直徑的圓與雙曲線在第一象限的交點為,若,則()A.與雙曲線的實軸長相等B.的面積為C.雙曲線的離心率為D.直線是雙曲線的一條漸近線5.我國古代數(shù)學論著中有如下敘述:“遠望巍巍塔七層,紅光點點倍加增,共燈二百五十四.”思如下:一座7層塔共掛了254盞燈,且相鄰兩層下一層所掛燈數(shù)是上一層所掛燈數(shù)的2倍.下列結論不正確的是()A.底層塔共掛了128盞燈B.頂層塔共掛了2盞燈C.最下面3層塔所掛燈的總盞數(shù)比最上面3層塔所掛燈的總盞數(shù)多200D.最下面3層塔所掛燈的總盞數(shù)是最上面3層塔所掛燈的總盞數(shù)的16倍6.設,則曲線在點處的切線的傾斜角是()A. B.C. D.7.拋物線有如下光學性質(zhì):平行于拋物線對稱軸的入射光線經(jīng)拋物線反射后必過拋物線的焦點.已知拋物線的焦點為F,一條平行于y軸的光線從點射出,經(jīng)過拋物線上的點A反射后,再經(jīng)拋物線上的另一點B射出,則經(jīng)點B反射后的反射光線必過點()A. B.C. D.8.有3個興趣小組,甲、乙兩位同學各自參加其中一個小組,每位同學參加各個小組的可能性相同,則這兩位同學參加同一個興趣小組的概率為A. B.C. D.9.過雙曲線(,)的左焦點作圓:的兩條切線,切點分別為,,雙曲線的左頂點為,若,則雙曲線的漸近線方程為()A. B.C. D.10.設為數(shù)列的前n項和,,且滿足,若,則()A.2 B.3C.4 D.511.設是周期為2的奇函數(shù),當時,,則()A. B.C. D.12.設圓:和圓:交于A,B兩點,則線段AB所在直線的方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若數(shù)列滿足,,則__________14.斐波那契數(shù)列,又稱“兔子數(shù)列”,由數(shù)學家斐波那契研究兔子繁殖問題時引入.已知斐波那契數(shù)列滿足,,,若記,,則________.(用,表示)15.已知P為拋物線上的一個動點,設P到拋物線準線的距離為d,點,那么的最小值為______16.定義離心率是的橢圓為“黃金橢圓”.已知橢圓是“黃金橢圓”,則_________.若“黃金橢圓”兩個焦點分別為、,P為橢圓C上的異于頂點的任意一點,點M是的內(nèi)心,連接并延長交于點N,則________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知曲線上任意一點滿足方程,(1)求曲線的方程;(2)若直線與曲線在軸左、右兩側的交點分別是,且,求的最小值.18.(12分)已知中心在坐標原點O的橢圓,左右焦點分別為,,離心率為,M,N分別為橢圓的上下頂點,且滿足.(1)求橢圓方程;(2)已知點C滿足,點T在橢圓上(T異于橢圓的頂點),直線NT與以C為圓心的圓相切于點P,若P為線段NT的中點,求直線NT的方程;(3)過橢圓內(nèi)的一點D(0,t),作斜率為k的直線l,與橢圓交于A,B兩點,直線OA,OB的斜率分別是,,若對于任意實數(shù)k,存在實數(shù)m,使得,求實數(shù)m的取值范圍.19.(12分)如圖,在四棱錐中,底面ABCD為矩形,側面PAD是正三角形,平面平面ABCD,M是PD的中點(1)證明:平面PCD;(2)若PB與底面ABCD所成角的正切值為,求二面角的正弦值20.(12分)已知命題p:函數(shù)有零點;命題,(1)若命題p,q均為真命題,求實數(shù)a的取值范圍;(2)若為真命題,為假命題,求實數(shù)a的取值范圍21.(12分)如圖,在三棱柱中,平面ABC,,,,點D,E分別在棱和棱上,且,,M為棱的中點(1)求證:;(2)求直線AB與平面所成角的正弦值22.(10分)在①;②;③;這三個條件中任選一個,補充在下面的問題中,然后解答補充完整的題.注:若選擇多個條件分別解答,則按第一個解答計分.已知,且(只需填序號).(1)求的值;(2)求展開式中的奇數(shù)次冪的項的系數(shù)之和
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據(jù)題意,分析歸納可得該數(shù)列可以寫成,,,……,,可得該數(shù)列的通項公式,分析可得答案.【詳解】解:根據(jù)題意,數(shù)列,,,,…,,可寫成,,,……,,對于,即,為該數(shù)列的第20項;故選:D.【點睛】此題考查了由數(shù)列的項歸納出數(shù)列的通項公式,考查歸納能力,屬于基礎題.2、D【解析】對于①在方程中換為,換為可判斷;對于②分析曲線的圖形是兩個拋物線的部分組成的可判斷;對于③在第一象限內(nèi),分析橢圓的圖形與曲線圖形的位置關系可判斷.【詳解】在曲線的方程中,換為,換為,方程不變,故曲線關于坐標原點對稱所以①正確,當時,曲線的方程化為,此時當時,曲線的方程化為,此時所以曲線圖形是兩個拋物線的部分組成的,不是橢圓,故②不正確.當,時,設,設,則,(當且僅當或時等號成立)所以在第一象限內(nèi),橢圓的圖形在曲線的上方.根據(jù)曲線和橢圓的的對稱性可得橢圓的圖形在曲線的外部(四個頂點在曲線上)所以曲線圍成區(qū)域的面積小于橢圓圍成區(qū)域的面積,故③正確.故選:D3、B【解析】直接求導,令求出,再將帶入原函數(shù)即可求解.【詳解】由得,當時,,解得,所以,.故選:B4、B【解析】由題意及雙曲線的定義可得,的值,進而可得A不正確,計算可判斷B正確,再求出,的關系可得C不正確,求出,的關系,進而求出漸近線的方程,可得D不正確【詳解】因為,又由題意及雙曲線的定義可得:,則,,所以A不正確;因為在以為直徑的圓上,所以,所以,所以B正確;在△中,由勾股定理可得,即,所以離心率,所以C不正確;由C的分析可知:,故,所以漸近線的方程為,即,所以D不正確;故選:B5、C【解析】由題設易知是公比為2的等比數(shù)列,應用等比數(shù)列前n項和公式求,結合各選項的描述及等比數(shù)列通項公式、前n項和公式判斷正誤即可.【詳解】從上往下記每層塔所掛燈的盞數(shù)為,則數(shù)列是公比為2的等比數(shù)列,且,解得,所以頂層塔共掛了2盞燈,B正確;底層塔共掛了盞燈,A正確最上面3層塔所掛燈總盞數(shù)為14,最下面3層塔所掛燈的總盞數(shù)為224,C不正確,D正確故選:C.6、C【解析】根據(jù)導數(shù)的概念可得,再利用導數(shù)的幾何意義即可求解.【詳解】因為,所以,則曲線在點處的切線斜率為,故所求切線的傾斜角為.故選:C7、D【解析】求出、坐標可得直線的方程,與拋物線方程聯(lián)立求出,根據(jù)選項可得答案,【詳解】把代入得,所以,所以直線的方程為即,與拋物線方程聯(lián)立解得,所以,因為反射光線平行于y軸,根據(jù)選項可得D正確,故選:D8、A【解析】每個同學參加的情形都有3種,故兩個同學參加一組的情形有9種,而參加同一組的情形只有3種,所求的概率為p=選A9、C【解析】根據(jù),,可以得到,從而得到與的關系式,再由,,的關系,進而可求雙曲線的漸近線方程【詳解】解:由,,則是圓的切線,,,,所以,因為雙曲線的漸近線方程為,即為故選:C10、B【解析】由已知條件可得數(shù)列為首項為2,公差為2的等差數(shù)列,然后根據(jù)結合等差數(shù)列的求和公式可求得答案【詳解】在等式中,令,可得,所以數(shù)列為首項為2,公差為2的等差數(shù)列,因為,所以,化簡得,,解得或(舍去),故選:B11、A【解析】由周期函數(shù)得,再由奇函數(shù)的性質(zhì)通過得結論【詳解】∵函數(shù)是周期為2的周期函數(shù),∴,而,又函數(shù)為奇函數(shù),∴.故選A【點睛】本題考查函數(shù)的周期性與奇偶性,屬于基礎題.此類題型,求函數(shù)值時,一般先用周期性化自變量到已知區(qū)間關于原點對稱的區(qū)間,然后再由奇函數(shù)性質(zhì)求得函數(shù)值12、A【解析】將兩圓的方程相減,即可求兩圓相交弦所在直線的方程.【詳解】設,因為圓:①和圓:②交于A,B兩點所以由①-②得:,即,故坐標滿足方程,又過AB的直線唯一確定,即直線的方程為.故選:A二、填空題:本題共4小題,每小題5分,共20分。13、7【解析】根據(jù)遞推公式,依次求得值.【詳解】依題意,由,可知,故答案為:714、【解析】由已知兩式相加求得,得,得到,從而得到,,利用可得答案.【詳解】因為,由,,得,所以,得,因為,所以,,所以,,所以,.故答案為:.15、5【解析】由拋物線的定義可得,所以,由圖可知當三點共線時,取得最小值,從而可求得結果【詳解】拋物線的焦點,準線為,如圖,過作垂直準線于點,則,所以,由圖可知當三點共線時,取得最小值,即最小值為,,所以的最小值為5,故答案為:516、①.②.【解析】第一空,直接套入“黃金橢圓”新定義即可,第二空,從內(nèi)切圓入手,找到等量關系,進而得到,求解即可【詳解】由題,,所以如圖,連接,設內(nèi)切圓半徑為,則,即,∴,∴,∴∴,∴故答案為:;【點睛】本題從新定義出發(fā),第一空直接套用定義可得答案,第二空升華,需要在理解新定義的基礎上,借助內(nèi)切圓的相關公式求解,層層遞進,是一道好題.關鍵點在于找到“”這一關系三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)8【解析】(1)根據(jù)雙曲線的定義即可得出答案;(2)可設直線的方程為,則直線的方程為,由,求得,同理求得,從而可求得的值,再結合基本不等式即可得出答案.【小問1詳解】解:設,則,等價于,曲線為以為焦點的雙曲線,且實軸長為2,焦距為,故曲線的方程為:;【小問2詳解】解:由題意可得直線的斜率存在且不為0,可設直線的方程為,則直線的方程為,由,得,所以,同理可得,,所以,,當且僅當時取等號,所以當時,取得最小值8.18、(1)1(2)或(3)【解析】(1)由已知可得,,再結合可求出,從而可求得橢圓方程,(2)設直線,代入橢圓方程中消去,解方程可求出點的坐標,從而可得NT中點的坐標,而,可得解方程可求出的值,即可得到直線NT的方程,(3)設直線,代入橢圓方程中消去,利用根與系數(shù)的關系結合直線的斜率公式可得,再由,可求出m的取值范圍【小問1詳解】設(c,0),M(0,b),N(0,b),①,又②,③,由①②③得,所以橢圓方程為1.【小問2詳解】由題C,0),設直線聯(lián)立得,那么,N(0,)NT中點.所以,因為直線NT與以C為圓心的圓相切于點P,所以所以所以得,解得或所以直線NT為:或.【小問3詳解】設直線,聯(lián)立方程得設A(,),B,),則…由對任意k成立,得點D在橢圓內(nèi),所以,所以,所以m的取值范圍為.19、(1)證明見解析(2)【解析】(1)依題意可得,再根據(jù)面面垂直的性質(zhì)得到平面,即可得到,即可得證;(2)取的中點為,連接,根據(jù)面面垂直的性質(zhì)得到平面,連接,即可得到為與底面所成角,令,,利用銳角三角函數(shù)的定義求出,建立如圖所示空間直角坐標系,利用空間向量法求出二面角的余弦值,即可得解;【小問1詳解】解:證明:在正中,為的中點,∴∵平面平面,平面平面,且.∴平面,又∵平面∴.又∵,且,平面.∴平面【小問2詳解】解:如圖,取的中點為,連接,在正中,,平面平面,平面平面,∴平面,連接,則為與底面所成角,即.不妨取,,,,∴以為原點建立如圖所示的空間直角坐標系,則有,,,,,,∴,設面的一個法向量為,則由令,則,又因為面,取作為面的一個法向量,設二面角為,∴,∴,因此二面角的正弦值為20、(1);(2).【解析】(1)根據(jù)二次函數(shù)的性質(zhì)求p為真時a的取值范圍,根據(jù)的性質(zhì)判斷與有交點求q為真時a的取值范圍,進而求p,q均為真時a的取值范圍.(2)根據(jù)復合命題的真假可得p,q一真一假,討論p、q的真假分別求a的取值范圍,最后取并集即可.【小問1詳解】若p為真,,解得或,所以若q為真,因為在上為增函數(shù),所以,故,所以若p,q均為真命題,a的取值范圍為【小問2詳解】由題設,易知:p,q兩命題一真一假當p真q假時,p為真,則或,q為假,則或,此時a的取值范圍為;當p假q真時,p為假,則,q為真,則,此時a的取值范圍為綜上,實數(shù)a的取值范圍為.21、(1)證明見解析;(2)【解析】(1)由線面垂直、等腰三角形的性質(zhì)易得、,再根據(jù)線面垂直的判定及性質(zhì)證明結論;(2)構建空間直角坐標系,確定相關點坐標,進而求的方向向量、面的法向量,應用空間向量夾角的坐標表示求直線與平面所成角的正弦值.【小問1詳解】在三棱柱中,平面,則平面,由平面,則,,則,又為的中點,則,又,則平面,由平面,因此,.【小問2詳解】以為原點,以,,為軸、軸、軸的正方向建立空間直角坐標系,如圖所示,可得:,,,,,,.∴,,,,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度知識產(chǎn)權轉(zhuǎn)讓合同轉(zhuǎn)讓價格及支付方式2篇
- 二零二五年度許可合同:醫(yī)療器械生產(chǎn)許可證授權協(xié)議3篇
- 二零二五年股權委托代持協(xié)議-綠色環(huán)保產(chǎn)業(yè)投資合作協(xié)議3篇
- 二零二五年度礦產(chǎn)資源開發(fā)總代理合同3篇
- 2024版外墻環(huán)保涂料銷售協(xié)議模板版B版
- 2024版公司合作保密協(xié)議范本
- 二零二五年度高速路橋箱涵施工與監(jiān)理合同2篇
- 2024年資金借入與償還合同樣本
- 二零二五年度集裝箱公路運輸物流安全保障協(xié)議3篇
- 二零二五年度網(wǎng)絡安全風險評估與治理協(xié)議書合同3篇
- 課題申報書:大中小學鑄牢中華民族共同體意識教育一體化研究
- 巖土工程勘察課件0巖土工程勘察
- 《腎上腺腫瘤》課件
- 2024-2030年中國典當行業(yè)發(fā)展前景預測及融資策略分析報告
- 《乘用車越野性能主觀評價方法》
- 幼師個人成長發(fā)展規(guī)劃
- 2024-2025學年北師大版高二上學期期末英語試題及解答參考
- 批發(fā)面包采購合同范本
- 乘風化麟 蛇我其誰 2025XX集團年終總結暨頒獎盛典
- 2024年大數(shù)據(jù)分析公司與中國政府合作協(xié)議
- 一年級數(shù)學(上)計算題專項練習匯編
評論
0/150
提交評論