版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
ModelingandEvaluationChapter3Wherewearenow1.DataAnalytics2.DataPreparationandCleaning3.ModelingandEvaluation4.Visualization5.TheModernAudit6.AuditAnalytics7.KeyPerformanceIndicators8.FinancialStatementAnalyticsObjectivesLO3-1Whatdoyouneedtoknowaboutdatamodels?LO3-2Whataresomeunsupervisedandsupervisedapproaches?LO3-3Howdoyouperformprofiling?LO3-4Howdoyouperformdatareduction?LO3-5Howdoyouperformregression?LO3-6Howdoyouperformclassification?LO3-7Howdoyouperformclustering?IntheIMPACTcycle,we’renowgoingtolookatPerformingtheTestPlanandAddressingtheResults.IdentifythequestionsMasterthedataPerformtestplanAddressandrefineresultsCommunicateinsightsTrackoutcomesExhibit1-1TheIMPACTCycleWhatdoyouneedtoknowaboutdatamodels?LO3-1Whatdoyouneedtoknowaboutdatamodels?Atargetisanexpectedattributeorvaluethatwewanttoevaluate.Example:FraudscoreInterestrateAclassisamanuallyassignedcategoryappliedtoarecordbasedonanevent.Example:Accept/RejectFraud/NotfraudWhatdoyouneedtoknowfirst?Anunsupervisedapproachisusedwhenyoudon’thaveaspecificquestion.Example:“Doourvendorsformnaturalgroupsbasedonsimilarattributes?”Asupervisedapproach
isusedwhenyouaretryingtopredictafutureoutcomebasedonhistoricaldata.Example:“Willanewvendorshipalargeorderontime?”Whataresomeunsupervisedapproaches?Clustering
–findundiscoverednaturalgroupingsinthedataCo-occurrencegrouping–eventsthathappentogetherProfiling
–identifytypicalbehaviorinthedataDatareduction–filterorgroupthedatatosimplifytheanalysisWhataresomesupervisedapproaches?Classification
–predictwhetherdatabelongstooneclassoranotherSimilaritymatching–groupdatabyattributesRegression
–predictaspecificvalueLinkprediction–socialnetworksCausalmodeling–aneventinfluencesanotherUseaflowcharttoidentifyanappropriateapproach.Q.Whatisthemaindifferencebetweensupervisedandunsupervisedmethods?Howdoyouperformprofiling?LO3-2Profilingreliesongatheringsummarystatisticsandidentifyingoutliers.Identifytheobjectsoractivityyouwanttoprofile.Determinethetypesofprofilingyouwanttoperform.Setboundariesorthresholdsfortheactivity.Interprettheresultsandmonitortheactivityand/orgeneratealistofexceptions.Followuponexceptions.Whataresomeexamplesofprofiling?Internalauditorsanalyzetravelandentertainmentexpensesforviolationsofinternalcontrols.Managersuseprofilingtocomparevariancesfromtargetranges.Whataresomeexamplesofprofiling?Inthecontinuousaudit,anauditormayuseBenford’sLawtoevaluatethefrequencydistributionofthefirstdigitsfromalargesetofnumericaldata.Q.Profilingisusedinlawenforcementforoffenderorcriminalprofiling.Howdoesthiscomparewithprofilingaccountingdata?Howdoyouperformdatareduction?LO3-3Datareductionisusedtofilterresults.1.Identifytheattributeyouwouldliketoreduceorfocuson.2.Filtertheresults.3.Interprettheresults.4.Followupontheresults.Whataresomeexamplesofdatareduction?InternalauditorsmaywanttolocatepaymentsmadetoSquarevendors.FinancialstatementanalystswilltakeXBRLinstancedocumentsandfilteronspecifictags.Q.HowmightthedatareductionapproachbeusedtosimplifyT&Eexpenses?Howdoyouperformregression?LO3-4Regressionallowstheaccountanttodevelopmodelstopredictexpectedoutcomes.Identifythevariablesthatmightpredictanoutcome.Determinethefunctionalformoftherelationship.Identifytheparametersofthemodel.Dependentvariable=f(independentvariables)Whataresomeexamplesofregression?Inmanagerialaccounting,regressionmaypredictemployeeturnover:Employeeturnover=f(currentprofessionalsalaries,healthoftheeconomy[GDP],salariesofferedbyotheraccountingfirmsorbycorporateaccounting,etc.)Inauditing,regressionmaybeusedtodeterminetheappropriatenessofallowanceaccounts:Allowanceforloanlosesamount=f(currentagedloans,loantype,customerloanhistory,collectionssuccess)Q.Regressionisusedtopredictstockreturnsfollowingarestatementofpastearnings.Whatfactors(independentvariables)doyouthinkmightpredictthechangeinstockprice(dependentvariable)?Howdoyouperformclassification?LO3-5Thegoalofclassificationistopredictwhetheranindividualweknowverylittleaboutwillbelongtooneclassoranother.Identifytheclassesyouwishtopredict.Manuallyclassifyanexistingsetofrecords.Selectasetofclassificationmodels.Divideyourdataintotrainingandtestingsets.Generateyourmodel.Interprettheresultsandselectthe“best”model.Whatelsedoyouneedtoknowaboutclassification?Trainingdataareexistingdatathathavebeenmanuallyevaluatedandassignedaclass.Testdataareexistingdatausedtoevaluatethemodel.Decisiontreesareusedtodividedataintosmallergroups.Decisionboundariesmarkthesplitbetweenoneclassandanother.Whatelsedoyouneedtoknowaboutclassification?Pruning
removesbranchesfromadecisiontreetoavoidoverfittingthemodel.Whatelsedoyouneedtoknowaboutclassification?Linearclassifiersareusefulforrankingitemsratherthansimplypredictingclassprobability.Theseareusefulfordeterminingthereallyimportantvalues,suchasvaluablecustomers,orwhichtransactionsaremostlikelyfraudulent.Whatelsedoyouneedtoknowaboutclassification?Supportvectormachineisadiscriminatingclassifierthatisdefinedbyaseparatinghyperplanethatworksfirsttofindthewidestmargin(orbiggestpipe)andthenworkstofindthemiddleline.Howdoweevaluateclassifiers?Trytoavoidoverfitting,ormodelsthataretooaccurate.Theyareactuallyprettybadapredictingafutureobservation.Lookforthesweetspotwherewemaximizetheaccuracyofthetestingdata.Q.Ifwearetryingtopredictwhetheraloanwillberejected,wouldyouexpectcreditscoretobepositivelyornegativelyassociatedwithloanrejection?Howdoyouperformclustering?LO3-6Howdoyouperformclustering?Clusteringisusedtoidentifygroupsofsimilardataelementsandtheunderlyingdriversofthosegroups.Clusteringalgorithmscalculatetheminimumdistanceofallobservationsandgroupsthoseelements.Whataresomeexamplesofclustering?Internalauditorscanuseclusteringtoidentifygroupsoftransactionsthatmayindicateriskorfraudininsuranceorotherpayments.Q.WhatarethreeclustersofcustomerswhomightshopatWalmart?SummaryInthischapter,weaddressedthethirdstepoftheIMPACTcyclemodel:the“P”for“performingtestplan.”Thatis,howarewegoingtotestoranalyzethedatatoaddressaproblemwearefacing?Basedonourproblemandthedataavailable,weprovidedaflowchartthathelpstheanalysttochoosethemostappropriatemodel,notingthedifferenceswhenweuseasupervisedversusanunsupervisedapproach.Specifically,weaddressedfivedataanalyticsapproachesortechniquesaremostcommontoaddressouraccountingquestions:profiling,datareduction,regression,classification,andclustering.Wealsoprovidedexamplesofaccountingandauditingproblemsaddressedbythesedataapproaches.WeintroducedtheconceptsofBenford’slawandfuzzymatch,whichwewilluseinsubsequentchapters.Wepresentedsomeclassificationterminology—includingtestandtrainingdata,decisiontreesandboundaries,linearclassifiers,andsupportvectormachines—andtalkedabouttheperilsofunder-andoverfittingthetrainingdataanditsconsequencesinpredictionsusingthetestdata.Visualization:UsingVisualizationsandSummariestoShareResultswithStakeholdersChapter4Wherewearenow1.DataAnalytics2.DataPreparationandCleaning3.ModelingandEvaluation4.Visualization5.TheModernAudit6.AuditAnalytics7.KeyPerformanceIndicators8.FinancialStatementAnalyticsObjectivesLO4-1DeterminethepurposeofyourdatavisualizationLO4-2ChoosethebestchartforyourdatasetLO4-3RefineyourcharttocommunicateefficientlyandeffectivelyLO4-4CommunicateyourresultsinawrittenreportIntheIMPACTcycle,we’renowgoingtolookatCommunicatingInsightsandTrackingOutcomes.IdentifythequestionsMasterthedataPerformtestplanAddressandrefineresultsCommunicateinsightsTrackoutcomesExhibit1-1TheIMPACTCycleDataAnalyticsareeffective,buttheyareonlyasimportantandeffectiveaswecancommunicateandmakethedataunderstandable.Whatisthepurposeofyourdatavisualization?LO4-1Whattypeofdataisbeingvisualized?
Areyouexplainingresultsorexploringthedata?Exhibit4-2ThefourcharttypesAreyouusingqualitativeandquantitativedata?Qualitativedataarecategoricaldata
(e.g.count,group,rank)Nominaldataissimple.
(e.g.haircolor)Ordinaldatacanberanked.
(e.g.gold,silver,bronze)Proportionshowsthemakeupofeachcategory.
(e.g.55%cats,45%dogs)Quantitativedataarenumerical
(e.g.age,height,dollaramount)Ratiodatadefines0as“absenceof”something.(e.g.cash)Intervaldatawhere0isjustanothernumber.(e.g.temperature)Discretedatashowonlywholenumbers.(e.g.pointsinabasketballgame)Continuousdatashownumberswithdecimals.(e.g.height)Distributions
describethemean,median,andstandarddeviationofthedata.Isyourvisualizationdeclarativeorexploratory?Declarativevisualizationsareusedtopresentfindings.
(e.g.financialresults)
Exploratoryvisualizationsareusedtogaininsightswhileyouareinteractingwithdata.
(e.g.identifyinggoodcustomers)Onceyouhavedefinedyourdataandthepurpose,youcanfindanappropriatechartorgraph.Exhibit4-3ThefourcharttypeswithdetailsQ.Whichtypeofdatascaleshouldthefollowingvariablesbemeasuredon?Instructorevaluations(excellent,good,average,poor)WeeklyclosingpriceofgoldNamesofcompanieslistedontheDowJonesIndustrialAverageFahrenheitscaleformeasuringtemperatureHowdoyouchoosetherightchart?LO4-2Whichchartsareappropriateforqualitativedata?Whenyouwanttoshowproportion:BarchartsPiechartsStackedbarchartTreemapsHeatmapsSymbolmapsWordcloudsWhichchartsareappropriateforquantitativedata?Whenyouwanttoshowcomplexdata:LinechartsBoxandwhiskerplotsScatterplotsFilledgeographicmapsHereisasummaryguideofwhentousedifferentvisualizations.
AlsocheckoutConceptual(Qualitative)Comparison:BarchartPiechartStackedbarchartTreemapHeatmapGeographicdata:SymbolmapTextdata:WordcloudData-Driven(Quantitative)Outlierdetection:BoxandwhiskerplotRelationshipbetweentwovariables:ScatterplotTrendovertime:
LinechartGeographicdata:
FilledmapExhibit4-8TypesofchartsWhichtoolsarehelpfulforcreatingvisualizations?TableauandMicrosoftBIaregreatforexploratorydataanalysis.TableauandMicrosoftBItopthelistofvisionaryleadersforvisualizationtools.MicrosoftExcelisgoodforbasicdeclarativecharts.Exhibit4-9GartnerMagicQuadrantforBusinessIntelligenceandAnalyticsPlatformsBadexample:Howdoesthischartillustratebias?Howbigofachangedoesthisrepresent?Whymightthecreatormakethischart?Exhibit4-12Amoreappropriatescaleisagoodstart.Exhibit4-12Exhibit4-13Stackingcanrevealtherealincrease.Exhibit4-12Exhibit4-14Badexample:Whatisthischarttryingtotellthereaderaboutwhosecomputerisattackedmore?IsFinnaScientist?IsMarkusanAdministrator?Dowecaremoreaboutthepeopleorroles?Howdotheusersevencompare?Exhibit4-15Ifwecareaboutindividuals,anorderedbarchartisalittlemoreclear.Exhibit4-15Exhibit4-16Ifwecareaboutfunction,anbarchartcanshowtheproportionmoreclearly.Exhibit4-15Exhibit4-17Andastackedbarchartisalmostalwayseasiertointerpret(inlessspace)thanapie.Exhibit4-15Exhibit4-18Q.Whichcharttypeisbetterforworkingwithdatesovertime,abarchartorlinegraph?Why?Howcanyourefineyourcharts?LO4-3Improvingyourchartscomesdowntochoosinganappropriatescaleandusingcolorseffectively.Considerscaleandincrements:Howmuchdatadoyouneedtoshow?Whatdoyoudowithoutliers?Whatisthebaseline?0?Somethingelse?Wouldcontextorreferencelinesmakethescalemoremeaningful?Thinkaboutyouruseofcolor:Whatdothecolorsmean?Shouldredbeusedforpositiveoutcomes?Whatcolorschemewouldhelpyourcolor-blindparticipants?Q.Howmighttheuseofcompanycolorsorlogosdistractfromavisualization?Howcantheuseofwordsprovideinsight?LO4-4Gettothepoint.Beclear,unambiguous,correct,interesting,anddirect.RemembertouseplainlanguagethroughouttheIMPACTmodelI:Explainwhatwasbeingresearchedandthepurposeoftheproject.M:Ifappropriate,describeissuesyouencounteredintheETLprocess.PandA:Giveanoverviewofyourmodelandlimitationsyoufaced.C:Provideanexplanationofthevisualyouchose.Describeanyitemsthatstandoutorthatareinteresting.T:Discusswhat’snextinyouranalysis.Howfrequentlywillitbeupdated?Aretheretrendsoroutliersthatshouldbepaidattention?ConsideryouraudienceandtonePlacethefocusonyouraudience.Craftdifferentversionsfordifferentaudiences.Useanappropriate
tone.Providetherightcontent.Avoidtoomuchdetail.Don’tforgettoreviseasneeded.Askotherpeopletoreadthoughyourwritingtomakesureyouareclear.
Q:IfyouwerepresentingdataonsalesforacompanylikeSláinte,howwouldyoudescribetheETLprocesstotheCEO?Totheprogrammerscreatingthereport?SummaryThischapterfocusedonthefifthstepoftheIMPACTmodel,orthe“C,”todiscusshowtocommunicatetheresultsofyourdataanalysisprojects.Communicationcanbedonethroughavarietyofdatavisualizationsandwrittenreports,dependingonyouraudienceandthedatayouareexhibiting.nordertoselecttheri
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025河南建筑安全員《B證》考試題庫(kù)及答案
- 貴陽(yáng)人文科技學(xué)院《先進(jìn)制造與特種加工》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣州珠江職業(yè)技術(shù)學(xué)院《動(dòng)物分子生物學(xué)C》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣州應(yīng)用科技學(xué)院《日本近現(xiàn)代文學(xué)作品選讀》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣州新華學(xué)院《東西方設(shè)計(jì)元素》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣州鐵路職業(yè)技術(shù)學(xué)院《電子商務(wù)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025海南省建筑安全員-B證考試題庫(kù)附答案
- 《固定收入證券》課件
- 一年級(jí)語(yǔ)文《借生日》
- 單位人力資源管理制度集錦匯編十篇
- 藝術(shù)漆培訓(xùn)課件
- 建德海螺二期施工組織設(shè)計(jì)
- 山東省菏澤市2023-2024學(xué)年高一上學(xué)期期末測(cè)試物理試題(解析版)
- 2024年學(xué)校后勤日用品采購(gòu)合同范本2篇
- 中建中建機(jī)電工程聯(lián)動(dòng)調(diào)試實(shí)施方案范本
- 新《安全生產(chǎn)法》安全培訓(xùn)
- 山東省濟(jì)南市2023-2024學(xué)年高一上學(xué)期1月期末考試 物理 含答案
- 中華人民共和國(guó)安全生產(chǎn)法知識(shí)培訓(xùn)
- 上海教育出版社 藝術(shù) 八年級(jí)上冊(cè)第三單元 鄉(xiāng)音鄉(xiāng)韻 京腔京韻系鄉(xiāng)情 教學(xué)設(shè)計(jì)
- 人教版(2024新教材)七年級(jí)上冊(cè)數(shù)學(xué)第一章《有理數(shù)》單元測(cè)試卷(含答案)
- 《色彩基礎(chǔ)知識(shí)》PPT課件(詳解)
評(píng)論
0/150
提交評(píng)論