新疆哈密地區(qū)第二中學2025屆高二數(shù)學第一學期期末復習檢測模擬試題含解析_第1頁
新疆哈密地區(qū)第二中學2025屆高二數(shù)學第一學期期末復習檢測模擬試題含解析_第2頁
新疆哈密地區(qū)第二中學2025屆高二數(shù)學第一學期期末復習檢測模擬試題含解析_第3頁
新疆哈密地區(qū)第二中學2025屆高二數(shù)學第一學期期末復習檢測模擬試題含解析_第4頁
新疆哈密地區(qū)第二中學2025屆高二數(shù)學第一學期期末復習檢測模擬試題含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

新疆哈密地區(qū)第二中學2025屆高二數(shù)學第一學期期末復習檢測模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線的右焦點為F,關于原點對稱的兩點A、B分別在雙曲線的左、右兩支上,,且點C在雙曲線上,則雙曲線的離心率為()A.2 B.C. D.2.,則與分別為()A.與 B.與C.與0 D.0與3.在三棱柱中,,,,則這個三棱柱的高()A1 B.C. D.4.已知直線與圓相切,則的值是()A. B.C. D.5.曲線在處的切線如圖所示,則()A. B.C. D.6.已知是雙曲線的左焦點,為右頂點,是雙曲線上的點,軸,若,則雙曲線的離心率為()A. B.C. D.7.“十二平均律”是通用的音律體系,明代朱載堉最早用數(shù)學方法計算出半音比例,為這個理論的發(fā)展做出了重要貢獻.十二平均律將一個純八度音程分成十二份,依次得到十三個單音,從第二個單音起,每一個單音的頻率與它的前一個單音的頻率的比都等于.若第一個單音的頻率為f,則第八個單音的頻率為A. B.C. D.8.某公司有320名員工,將這些員工編號為1,2,3,…,320,從這些員工中使用系統(tǒng)抽樣的方法抽取20人進行“學習強國”的問卷調查,若54號被抽到,則下面被抽到的是()A.72號 B.150號C.256號 D.300號9.已知函數(shù)為偶函數(shù),且當時,,則不等式的解集為()A. B.C. D.10.下列關于拋物線的圖象描述正確的是()A.開口向上,焦點為 B.開口向右,焦點為C.開口向上,焦點為 D.開口向右,焦點為11.如圖,矩形BDEF所在平面與正方形ABCD所在平面互相垂直,,,點P在線段EF上.給出下列命題:①存在點P,使得直線平面ACF;②存在點P,使得直線平面ACF;③直線DP與平面ABCD所成角的正弦值的取值范圍是;④三棱錐的外接球被平面ACF所截得的截面面積是.其中所有真命題的序號()A.①③ B.①④C.①②④ D.①③④12.若直線過點(1,2),(4,2+),則此直線的傾斜角是()A.30° B.45°C.60° D.90°二、填空題:本題共4小題,每小題5分,共20分。13.已知正四面體ABCD中,E,F(xiàn)分別是線段BC,AD的中點,點G是線段CD上靠近D的四等分點,則直線EF與AG所成角的余弦值為______14.設雙曲線的焦點為,點為上一點,,則為_____.15.平面直角坐標系內動點M()與定點F(4,0)的距離和M到定直線的距離之比是常數(shù),則動點M的軌跡是___________16.如圖,棱長為1的正方體,點沿正方形按的方向作勻速運動,點沿正方形按的方向以同樣的速度作勻速運動,且點分別從點A與點同時出發(fā),則的中點的軌跡所圍成圖形的面積大小是________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知公差不為0的等差數(shù)列的前項和為,且,,成等比數(shù)列,且.(1)求的通項公式;(2)若,求數(shù)列的前n項和.18.(12分)已知空間中三點,,,設,(1)求向量與向量的夾角的余弦值;(2)若與互相垂直,求實數(shù)的值19.(12分)已知橢圓的左、右焦點分別為,,離心率為,過左焦點的直線l與橢圓C交于A,B兩點,的周長為8(1)求橢圓C的標準方程;(2)如圖,,是橢圓C的短軸端點,P是橢圓C上異于點,的動點,點Q滿足,,求證與的面積之比為定值20.(12分)若存在實常數(shù)k和b,使得函數(shù)和對其公共定義域上的任意實數(shù)x都滿足:和恒成立,則稱此直線y=kx+b為和的“隔離直線”.已知函數(shù),.(1)證明函數(shù)在內單調遞增;(2)證明和之間存在“隔離直線”,且b的最小值為-4.21.(12分)已知△ABC的內角A,B,C的對邊分別為a,b,c,滿足(2a﹣b)sinA+(2b﹣a)sinB=2csinC.(1)求角C的大??;(2)若cosA=,求的值.22.(10分)已知點為橢圓C的右焦點,P為橢圓上一點,且(O為坐標原點),.(1)求橢圓C的標準方程;(2)經(jīng)過點的直線l與橢圓C交于A,B兩點,求弦的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】設,由,得到四邊形是矩形,在中,利用勾股定理求得,再在中,利用勾股定理求解.【詳解】如圖所示:設,則,,,因為,所以,則四邊形是矩形,在中,,即,解得,在中,,即,解得,故選:D2、C【解析】利用正弦函數(shù)和常數(shù)導數(shù)公式,結合代入法進行求解即可.【詳解】因為,所以,所以,,故選:C3、D【解析】先求出平面ABC的法向量,然后將高看作為向量在平面ABC的法向量上的投影的絕對值,則答案可求.【詳解】設平面ABC的法向量為,而,,則,即有,不妨令,則,故,設三棱柱的高為h,則,故選:D.4、D【解析】直線與圓相切,直接通過求解即可.【詳解】因為直線與圓相切,所以圓心到直線的距離,所以,.故選:D5、C【解析】由圖可知切線斜率為,∴.故選:C.6、C【解析】根據(jù)條件可得與,進而可得,,的關系,可得解.【詳解】由已知得,設點,由軸,則,代入雙曲線方程可得,即,又,所以,即,整理可得,故,解得或(舍),故選:C.7、D【解析】分析:根據(jù)等比數(shù)列的定義可知每一個單音的頻率成等比數(shù)列,利用等比數(shù)列的相關性質可解.詳解:因為每一個單音與前一個單音頻率比為,所以,又,則故選D.點睛:此題考查等比數(shù)列的實際應用,解決本題的關鍵是能夠判斷單音成等比數(shù)列.等比數(shù)列的判斷方法主要有如下兩種:(1)定義法,若()或(),數(shù)列等比數(shù)列;(2)等比中項公式法,若數(shù)列中,且(),則數(shù)列是等比數(shù)列.8、B【解析】根據(jù)系統(tǒng)抽樣分成20個小組,每組16人中抽一人,故抽到的序號相差16的整數(shù)倍,即可求解.【詳解】∵用系統(tǒng)抽樣的方法從320名員工中抽取一個容量為20的樣本∴,即每隔16人抽取一人∵54號被抽到∴下面被抽到的是54+16×6=150號,而其他選項中的數(shù)字不滿足與54相差16的整數(shù)倍,故答案為:B故選:B9、D【解析】結合導數(shù)以及函數(shù)的奇偶性判斷出的單調性,由此化簡不等式來求得不等式的解集.【詳解】當時,單調遞增,,所以單調遞增.因為是偶函數(shù),所以當時,單調遞減.,,,或.即不等式的解集為.故選:D10、A【解析】把化成拋物線標準方程,依據(jù)拋物線幾何性質看開口方向,求其焦點坐標即可解決.【詳解】,即.則,即故此拋物線開口向上,焦點為故選:A11、D【解析】當點P是線段EF中點時判斷①;假定存在點P,使得直線平面ACF,推理導出矛盾判斷②;利用線面角的定義轉化列式計算判斷③;求出外接圓面積判斷④作答.【詳解】取EF中點G,連DG,令,連FO,如圖,在正方形ABCD中,O為BD中點,而BDEF是矩形,則且,即四邊形DGFO是平行四邊形,即有,而平面ACF,平面ACF,于是得平面ACF,當點P與G重合時,直線平面ACF,①正確;假定存在點P,使得直線平面ACF,而平面ACF,則,又,從而有,在中,,DG是直角邊EF上中線,顯然在線段EF上不存在點與D連線垂直于DG,因此,假設是錯的,即②不正確;因平面平面,平面平面,則線段EF上的動點P在平面上的射影在直線BD上,于是得是直線DP與平面ABCD所成角的,在矩形BDEF中,當P與E不重合時,,,而,則,當P與E重合時,,,因此,,③正確;因平面平面,平面平面,,平面,則平面,,在中,,顯然有,,由正弦定理得外接圓直徑,,三棱錐的外接球被平面ACF所截得的截面是的外接圓,其面積為,④正確,所以所給命題中正確命題的序號是①③④.故選:D【點睛】結論點睛:兩個平面互相垂直,則一個平面內任意一點在另一個平面上的射影都在這兩個平面的交線上.12、A【解析】求出直線的斜率,由斜率得傾斜角【詳解】由題意直線斜率為,所以傾斜角為故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】建立空間直角坐標系,令正四面體的棱長為,即可求出點的坐標,從而求出異面直線所成角的余弦值;【詳解】解:如圖建立空間直角坐標系,令正四面體的棱長為,則,所以,所以,所以,,,,,設,因為,所以,所以,所以,,設直線與所成角為,則故答案為:14、【解析】將方程化為雙曲線的標準方程,再利用雙曲線的定義進行求解.【詳解】將化為,所以,,由雙曲線的定義,得:,即,所以或(舍)故答案為:.15、【解析】根據(jù)直接法,即可求軌跡.【詳解】解:動點與定點的距離和它到定直線的距離之比是常數(shù),根據(jù)題意得,點的軌跡就是集合,由此得.將上式兩邊平方,并化簡,得所以,動點的軌跡是長軸長、短軸長分別為12、的橢圓故答案為:16、##【解析】畫出符合要求的圖形,觀察得到軌跡是菱形,并進行充分性和必要性兩方面的證明,并求解出軌跡圖形的面積.【詳解】如圖,分別是正方形ABCD,,的中心,下面進行證明:菱形EFGC的周界即為動線段PQ的中點H的軌跡,首先證明:如果點H是動線段PQ的中點,那么點H必在菱形EFGC的周界上,分兩種情況證明:(1)P,Q分別在某一個定角的兩邊上,不失一般性,設P從B到C,而Q同時從到C,由于速度相同,所以PQ必平行于,故PQ的中點H必在上;(2)P,Q分別在兩條異面直線上,不失一般性,設P從A到B,同時Q從到,由于速度相同,則,由于H為PQ的中點,連接并延長,交底面ABCD于點T,連接PT,則平面與平面交線是PT,∵∥平面,∴∥PT,∴,而,∥BC,∴是等腰直角三角形,,從而T在AC上,可以證明FH∥AC,GH∥AC,DG∥AC,基于平行線的唯一性,顯然H在DG上,綜合(1)(2)可證明,線段PQ的中點一定在菱形EFGC的周界上;下面證明:如果點H在菱形EFGC的周界上,則點H必定是符合條件的線段的中點.也分兩種情況進行證明:(1)H在CG或CE上,過點H作PQ∥(或BD),而與BC及(或CD及BC)分別相交于P和Q,由相似的性質可得:PH=QH,即H是PQ的中點,同時可證:BP=(或BQ=DP),因此P、Q符合題設條件(2)H在EF或FG上,不失一般性,設H在FG上,連接并延長,交平面AC于點T,顯然T在AC上,過T作TP∥CB于點P,則TP∥,在平面上,連接PH并延長,交于點Q,在三角形中,G是的中點,∥AC,則H是的中點,于是,從而有,又因為TP∥CB,,所以,從而,因此P,Q符合題設條件.由(1)(2),如果H是菱形EFGC周界上的任一點,則H必是符合題設條件的動線段PQ的中點,證畢.因為四邊形為菱形,其中,所以邊長為且,為等邊三角形,,所以面積.故答案為:【點睛】對于立體幾何軌跡問題,要畫出圖形,并要善于觀察,利用所學的立體幾何方面的知識,大膽猜測,小心驗證,對于多種情況的,要畫出相應的圖形,注意分類討論.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)根據(jù)等差數(shù)列的通項公式和等比中項,可得,再根據(jù)等差數(shù)列的前項和公式,即可求出,,進而求出結果;(2)由(1)得,結合等比數(shù)列前項和公式和對數(shù)運算性質,利用分組求和,即可求出結果.【小問1詳解】解:設的公差為,由,,成等比數(shù)列可知,即,化簡得.由可得,所以.將代入,得,,所以.小問2詳解】解:由(1)得,所以.18、(1);(2)或.【解析】(1)坐標表示出、,利用向量夾角的坐標表示求夾角余弦值;(2)坐標表示出k+、k-2,利用向量垂直的坐標表示列方程求的值.【詳解】由題設,=(1,1,0),=(-1,0,2)(1)cosθ=,所以和的夾角余弦值為.(2)k+=k(1,1,0)+(-1,0,2)=(k-1,k,2),k-2=(k+2,k,-4),又(k+)⊥(k-2),則(k-1,k,2)·(k+2,k,-4)=(k-1)(k+2)+k2-8=2k2+k-10=0,解得k=-或2.19、(1)(2)證明見解析【解析】(1)根據(jù)周長為8,求得a,再根據(jù)離心率求解;(2)方法一:設,,得到直線和直線的方程,聯(lián)立求得Q的橫坐標,根據(jù)在橢圓上,得到,然后代入Q的橫坐標求解;方法二:設直線,的斜率分別為k,,點,,直線的方程為,與橢圓方程聯(lián)立,求得點P橫坐標,再由的直線方程聯(lián)立,得到P,Q的橫坐標的關系求解.【小問1詳解】解:∵的周長為8,∴,即,∵離心率,∴,,∴橢圓C的標準方程為【小問2詳解】方法一:設,則直線斜率,∵,∴直線斜率,∴直線的方程為:,同理直線的方程為:,聯(lián)立上面兩直線方程,消去y,得,∵在橢圓上,∴,即,∴,∴所以與的面積之比為定值4方法二:設直線,的斜率分別為k,,點,,則直線的方程為,∵,∴直線的方程為,將代入,得,∵P是橢圓上異于點,的點,∴,又∵,即,∴,即,由,得直線的方程為,聯(lián)立得,∴所以與的面積之比為定值420、(1)見解析(2)見解析【解析】(1)由導數(shù)得出在上的單調性;(2)設和之間的隔離直線為y=kx+b,由題設條件得出對任意恒成立,再由二次函數(shù)的性質求解即可

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論