湖南省衡陽市衡陽縣第三中學(xué)2025屆高一數(shù)學(xué)第一學(xué)期期末聯(lián)考模擬試題含解析_第1頁
湖南省衡陽市衡陽縣第三中學(xué)2025屆高一數(shù)學(xué)第一學(xué)期期末聯(lián)考模擬試題含解析_第2頁
湖南省衡陽市衡陽縣第三中學(xué)2025屆高一數(shù)學(xué)第一學(xué)期期末聯(lián)考模擬試題含解析_第3頁
湖南省衡陽市衡陽縣第三中學(xué)2025屆高一數(shù)學(xué)第一學(xué)期期末聯(lián)考模擬試題含解析_第4頁
湖南省衡陽市衡陽縣第三中學(xué)2025屆高一數(shù)學(xué)第一學(xué)期期末聯(lián)考模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

湖南省衡陽市衡陽縣第三中學(xué)2025屆高一數(shù)學(xué)第一學(xué)期期末聯(lián)考模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.我國東漢數(shù)學(xué)家趙爽在《周髀算經(jīng)》中利用一副“弦圖”給出了勾股定理的證明,后人稱其為“趙爽弦圖”,它是由四個全等的直角三角形與一個小正方形拼成的一個大正方形,如圖所示,在“趙爽弦圖”中,若,,,則()A. B.C. D.2.已知且,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件3.已知唯一的零點在區(qū)間、、內(nèi),那么下面命題錯誤的A.函數(shù)在或,內(nèi)有零點B.函數(shù)在內(nèi)無零點C.函數(shù)在內(nèi)有零點D.函數(shù)在內(nèi)不一定有零點4.若一束光線從點射入,經(jīng)直線反射到直線上的點,再經(jīng)直線反射后經(jīng)過點,則點的坐標為()A. B.C. D.5.已知,,則()A. B.C. D.6.已知函數(shù)y=xa,y=xb,y=cx的圖象如圖所示,則A.c<b<a B.a<b<cC.c<a<b D.a<c<b7.平行于同一平面的兩條直線的位置關(guān)系是A.平行 B.相交或異面C.平行或相交 D.平行、相交或異面8.已知等邊兩個頂點,且第三個頂點在第四象限,則邊所在的直線方程是A. B.C. D.9.已知函數(shù):①y=2x;②y=log2x;③y=x-1;④y=;則下列函數(shù)圖像(第一象限部分)從左到右依次與函數(shù)序號的對應(yīng)順序是()A.②①③④ B.②③①④C.④①③② D.④③①②10.已知函數(shù)()的部分圖象如圖所示,則的值分別為A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.某同學(xué)在研究函數(shù)時,給出下列結(jié)論:①對任意成立;②函數(shù)的值域是;③若,則一定有;④函數(shù)在上有三個零點.則正確結(jié)論的序號是_______.12.圓柱的側(cè)面展開圖是邊長分別為的矩形,則圓柱的體積為_____________13.已知函數(shù),則當_______時,函數(shù)取得最小值為_________.14.有下列四個說法:①已知向量,,若與的夾角為鈍角,則;②若函數(shù)的圖象關(guān)于直線對稱,則;③函數(shù)在上單調(diào)遞減,在上單調(diào)遞增;④當時,函數(shù)有四個零點其中正確的是___________(填上所有正確說法的序號)15.化簡________.16.已知表示這個數(shù)中最大的數(shù).能夠說明“對任意,都有”是假命題的一組整數(shù)的值依次可以為_____三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.觀察以下等式:①②③④⑤(1)對①②③進行化簡求值,并猜想出④⑤式子的值;(2)根據(jù)上述各式的共同特點,寫出一條能反映一般規(guī)律的等式,并對等式的正確性作出證明18.已知函數(shù),函數(shù)的最小正周期為,是函數(shù)的一條對稱軸.(1)求函數(shù)的對稱中心和單調(diào)區(qū)間;(2)若,求函數(shù)在的最大值和最小值,并寫出對應(yīng)的的值19.如果一個函數(shù)的值域與其定義域相同,則稱該函數(shù)為“同域函數(shù)”.已知函數(shù)的定義域為且.(Ⅰ)若,,求的定義域;(Ⅱ)當時,若為“同域函數(shù)”,求實數(shù)的值;(Ⅲ)若存在實數(shù)且,使得為“同域函數(shù)”,求實數(shù)的取值范圍.20.已知函數(shù),,.(1)若,解關(guān)于方程;(2)設(shè),函數(shù)在區(qū)間上的最大值為3,求的取值范圍;(3)當時,對任意,函數(shù)在區(qū)間上的最大值與最小值的差不大于1,求的取值范圍.21.如圖所示,某市政府決定在以政府大樓O為中心,正北方向和正東方向的馬路為邊界的扇形地域內(nèi)建造一個圖書館.為了充分利用這塊土地,并考慮與周邊環(huán)境協(xié)調(diào),設(shè)計要求該圖書館底面矩形的四個頂點都要在邊界上,圖書館的正面要朝市政府大樓.設(shè)扇形的半徑OM=R,∠MOP=45°,OB與OM之間的夾角為θ.(1)將圖書館底面矩形ABCD的面積S表示成θ的函數(shù).(2)若R=45m,求當θ為何值時,矩形ABCD的面積S最大?最大面積是多少?(?。?.414)

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】利用平面向量的線性運算及平面向量的基本定理求解即可【詳解】∵∴∵∴=∴=,∴故選:C2、D【解析】根據(jù)充分、必要條件的知識確定正確選項.【詳解】“”時,若,則,不能得到“”.“”時,若,則,不能得到“”.所以“”是“”的既不充分也不必要條件.故選:D3、C【解析】利用零點所在的區(qū)間之間的關(guān)系,將唯一的零點所在的區(qū)間確定出,則其他區(qū)間就不會存在零點,進行選項的正誤篩選【詳解】解:由題意,唯一的零點在區(qū)間、、內(nèi),可知該函數(shù)的唯一零點在區(qū)間內(nèi),在其他區(qū)間不會存在零點.故、選項正確,函數(shù)的零點可能在區(qū)間內(nèi),也可能在內(nèi),故項不一定正確,函數(shù)的零點可能在區(qū)間內(nèi),也可能在內(nèi),故函數(shù)在內(nèi)不一定有零點,項正確故選:【點睛】本題考查函數(shù)零點的概念,考查函數(shù)零點的確定區(qū)間,考查命題正誤的判定.注意到命題說法的等價說法在判斷中的作用4、C【解析】由題可求A關(guān)于直線的對稱點為及關(guān)于直線的對稱點為,可得直線的方程,聯(lián)立直線,即得.【詳解】設(shè)A關(guān)于直線的對稱點為,則,解得,即,設(shè)關(guān)于直線的對稱點為,則,解得,即,∴直線的方程為:代入,可得,故.故選:C.5、D【解析】由同角三角函數(shù)的平方關(guān)系計算即可得出結(jié)果.【詳解】因為,,,,所以.故選:D6、A【解析】由指數(shù)函數(shù)、冪函數(shù)的圖象和性質(zhì),結(jié)合圖象可得a>1,b=12,【詳解】由圖象可知:a>1,y=xb的圖象經(jīng)過點4,2當x=1時,y=c∴c<b<a,故選:A【點睛】本題考查了函數(shù)圖象的識別,關(guān)鍵掌握指數(shù)函數(shù),對數(shù)函數(shù)和冪函數(shù)的圖象和性質(zhì),屬于基礎(chǔ)題.7、D【解析】根據(jù)線面平行的位置關(guān)系及線線位置關(guān)系的分類及定義,可由已知兩直線平行于同一平面,得到兩直線的位置關(guān)系【詳解】解:若,且則與可能平行,也可能相交,也有可能異面故平行于同一個平面的兩條直線的位置關(guān)系是平行或相交或異面故選【點睛】本題考查的知識點是空間線線關(guān)系及線面關(guān)系,熟練掌握空間線面平行的位置關(guān)系及線線關(guān)系的分類及定義是詳解本題的關(guān)鍵,屬于基礎(chǔ)題8、C【解析】如圖所示,直線額傾斜角為,故斜率為,由點斜式得直線方程為.考點:直線方程.9、D【解析】圖一與冪函數(shù)圖像相對應(yīng),所以應(yīng)④;圖二與反比例函數(shù)相對應(yīng),所以應(yīng)為③;圖三與指數(shù)函數(shù)相對應(yīng),所以應(yīng)為①;圖四與對數(shù)函數(shù)圖像相對應(yīng),所以應(yīng)為②所以對應(yīng)順序為④③①②,故選D10、B【解析】由條件知道:均是函數(shù)的對稱中心,故這兩個值應(yīng)該是原式子分母的根,故得到,由圖像知道周期是,故,故,再根據(jù)三角函數(shù)的對稱中心得到,故如果,根據(jù),得到故答案為B點睛:根據(jù)函數(shù)的圖像求解析式,一般要考慮的是圖像中的特殊點,代入原式子;再就是一些常見的規(guī)律,分式型的圖像一般是有漸近線的,且漸近線是分母沒有意義的點;還有常用的是函數(shù)的極限值等等方法二、填空題:本大題共6小題,每小題5分,共30分。11、①②③【解析】由奇偶性判斷①,結(jié)合①對,,三種情況討論求值域,判斷②,由單調(diào)性判斷③,由③可知的圖像與函數(shù)的圖像只有兩個交點,進而判斷④,從而得出答案【詳解】①,即,故正確;②當時,,由①可知當時,,當時,,所以函數(shù)的值域是,正確;③當時,,由反比例函數(shù)的單調(diào)性可知,在上是增函數(shù),由①可知在上也是增函數(shù),所以若,則一定有,正確;④由③可知的圖像與函數(shù)的圖像只有兩個交點,故錯誤綜上正確結(jié)論的序號是①②③【點睛】本題考查函數(shù)的基本性質(zhì),包括奇偶性,單調(diào)性,值域等,屬于一般題12、或【解析】有兩種形式的圓柱的展開圖,分別求出底面半徑和高,分別求出體積.【詳解】圓柱的側(cè)面展開圖是邊長為2a與a的矩形,當母線為a時,圓柱的底面半徑是,此時圓柱體積是;當母線為2a時,圓柱的底面半徑是,此時圓柱的體積是,綜上所求圓柱的體積是:或,故答案為或;本題考查圓柱的側(cè)面展開圖,圓柱的體積,容易疏忽一種情況,導(dǎo)致錯誤.13、①.##②.【解析】根據(jù)求出的范圍,根據(jù)余弦函數(shù)的圖像性質(zhì)即可求其最小值.【詳解】∵,∴,∴當,即時,取得最小值為,∴當時,最小值為.故答案為:;-3.14、②③【解析】①:根據(jù)平面向量夾角的性質(zhì)進行求解判斷;②:利用函數(shù)的對稱性,結(jié)合兩角和(差)的正余弦公式進行求解判斷即可;③:利用導(dǎo)數(shù)的性質(zhì)、函數(shù)的奇偶性進行求解判斷即可.④:根據(jù)對數(shù)函數(shù)的性質(zhì),結(jié)合零點的定義進行求解判斷即可【詳解】①:因為與的夾角為鈍角,所以有且與不能反向共線,因此有,當與反向共線時,,所以有且,因此本說法不正確;②:因為函數(shù)的圖象關(guān)于直線對稱,所以有,即,于是有:,化簡,得,因為,所以,因此本說法正確;③:因為,所以函數(shù)偶函數(shù),,當時,單調(diào)遞增,即在上單調(diào)遞增,又因為該函數(shù)是偶函數(shù),所以該在上單調(diào)遞減,因此本說法正確;④:,問題轉(zhuǎn)化為函數(shù)與函數(shù)的交點個數(shù)問題,如圖所示:當時,,此時有四個交點,當時,,所以交點的個數(shù)不是四個,因此本說法不正確,故答案為:②③15、【解析】觀察到,故可以考慮直接用輔助角公式進行運算.【詳解】故答案為:.16、(答案不唯一)【解析】首先利用新定義,再列舉命題為假命題的一組數(shù)值,再根據(jù)定義,驗證命題是假命題.【詳解】設(shè),,則,而,,故命題為假命題,故依次可以為故答案為:(答案不唯一)三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)答案見解析;(2);證明見解析.【解析】(1)利用特殊角的三角函數(shù)值計算即得;(2)根據(jù)式子的特點可得等式,然后利用和差角公式及同角關(guān)系式化簡運算即得,【小問1詳解】猜想:【小問2詳解】三角恒等式為證明:=18、(1)對稱中心是,單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是(2)當時,,當時,【解析】(1)由函數(shù)的最小正周期,求得,再根據(jù)當時,函數(shù)取到最值求得,根據(jù)函數(shù)的性質(zhì)求對稱中心和單調(diào)區(qū)間;(2)寫出的解析式,根據(jù)定義域,求最值【詳解】(1),,,所以,,對稱中心是,單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是(2),,當時,,當時,【點睛】三角函數(shù)最值問題要注意整體代換思想的體現(xiàn),由的取值范圍推斷的取值范圍19、(Ⅰ);(Ⅱ);(Ⅲ).【解析】(Ⅰ)當,時,解出不等式組即可;(Ⅱ)當時,,分、兩種情況討論即可;(Ⅲ)分、且、且三種情況討論即可.【詳解】(Ⅰ)當,時,由題意知:,解得:.∴的定義域為;(Ⅱ)當時,,(1)當,即時,的定義域為,值域為,∴時,不是“同域函數(shù)”.(2)當,即時,當且僅當時,為“同域函數(shù)”.∴.綜上所述,的值為.(Ⅲ)設(shè)的定義域為,值域為.(1)當時,,此時,,,從而,∴不是“同域函數(shù)”.(2)當,即,設(shè),則的定義域.①當,即時,的值域.若為“同域函數(shù)”,則,從而,,又∵,∴的取值范圍為.②當,即時,的值域.若為“同域函數(shù)”,則,從而,此時,由,可知不成立.綜上所述,的取值范圍為【點睛】關(guān)鍵點睛:解答本題的關(guān)鍵是理解清楚題意,能夠分情況求出的定義域和值域.20、(1);(2);(3).【解析】(1)將代入函數(shù)的解析式,并求出函數(shù)的定義域,利用對數(shù)的運算法則可解出方程;(2)當時,,分、和三種情況討論,去絕對值,分析函數(shù)在區(qū)間上的單調(diào)性,結(jié)合該函數(shù)在區(qū)間上的最大值為,可求出實數(shù)的取值范圍;(3)利用對數(shù)的運算性質(zhì)可得出,可知該函數(shù)在區(qū)間上為減函數(shù),由題意得出對任意的恒成立,求出在上的最大值,即可得出實數(shù)的取值范圍.【詳解】(1)當時,,則,定義域為.由,可得,可得,解得或(舍去),因此,關(guān)于的方程的解為;(2)當時,.當時,對任意的恒成立,則,此時,函數(shù)在區(qū)間上為增函數(shù),,合乎題意;當時,對任意的恒成立,則,此時,函數(shù)在區(qū)間上為減函數(shù),,解得,不合乎題意;當時,令,得,此時,所以,函數(shù)在區(qū)間上為減函數(shù),在區(qū)間上為增函數(shù).,,由于,所以,解得.此時,.綜上所述,實數(shù)的取值范圍是;(3),由于內(nèi)層函數(shù)在區(qū)間為減函數(shù),外層函數(shù)為增函數(shù),所以,函數(shù)在區(qū)間上為減函數(shù),所以,,由題意可得,可得,所以,.①當時,;②當時,令,設(shè),可得.下面利用定義證明函數(shù)在區(qū)間上的單調(diào)性,任取、且,即,,,,,,即,所以,函數(shù)在區(qū)間上單調(diào)遞減,當時,函數(shù)取得最大值.綜上所述,函數(shù)在上的最大值為,.因此,實數(shù)的取值范圍是.【點睛】本題考查對數(shù)方程的求解、考查了利用帶絕對值函數(shù)的最值求參數(shù),同時也考查了函數(shù)不等式恒成立問題,考查運算求解能力,屬于中等題.21、(1)S=R2sin-R2,θ∈;(2)當θ=時,矩形ABCD面積S最大,最大面積為838.35m2.【解析】(1)設(shè)OM與BC的交點為F,用表示出,,,從而可得面積的表達式;(2)結(jié)合正弦函數(shù)的性質(zhì)求得最大值【詳解】解:(1)由題意,可知點M為PQ的中點,所以O(shè)M⊥AD.設(shè)OM與BC的交點為F,則BC=2Rsinθ,OF=Rcosθ,所以AB=OF-AD=Rcosθ-Rs

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論