版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆江蘇省海安市數(shù)學(xué)高二上期末經(jīng)典模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知等比數(shù)列滿足,則q=()A.1 B.-1C.3 D.-32.下列命題正確的是()A經(jīng)過三點確定一個平面B.經(jīng)過一條直線和一個點確定一個平面C.四邊形確定一個平面D.兩兩相交且不共點的三條直線確定一個平面3.已知函數(shù)的圖象過點,令.記數(shù)列的前n項和為,則()A. B.C. D.4.有6個相同的球,分別標有數(shù)字1,2,3,4,5,6,從中有放回的隨機取兩次,每次取1個球.甲表示事件“第一次取出的球的數(shù)字是1”,乙表示事件“第二次取出的球的數(shù)字是6”,丙表示事件“兩次取出的球的數(shù)字之和是5”,丁表示事件“兩次取出的球的數(shù)字之和是偶數(shù)”,則下列判斷正確的是()A.甲與丙是互斥事件 B.乙與丙是對立事件C.甲與丁是對立事件 D.丙與丁是互斥事件5.過拋物線的焦點引斜率為1的直線,交拋物線于,兩點,則()A.4 B.6C.8 D.106.正方體中,E、F分別是與的中點,則直線ED與所成角的余弦值是()A. B.C. D.7.若直線的傾斜角為120°,則直線的斜率為()A. B.C. D.8.已知直線經(jīng)過拋物線的焦點,且與該拋物線交于,兩點,若滿足,則直線的方程為()A. B.C. D.9.已知雙曲線的左右焦點分別為、,過作的一條漸近線的垂線,垂足為,若的面積為,則的漸近線方程為A. B.C. D.10.直線分別與軸,軸交于,兩點,點在圓上,則面積的取值范圍是A. B.C. D.11.在長方體,,則異面直線與所成角的余弦值是()A. B.C. D.12.已知雙曲線的離心率為2,且與橢圓有相同的焦點,則該雙曲線的漸近線方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如果方程表示焦點在軸上的橢圓,那么實數(shù)的取值范圍是______.14.已知函數(shù),,當時,不等式恒成立,則實數(shù)a的取值范圍為_______15.拋物線C:的焦點F,其準線過(-3,3),過焦點F傾斜角為的直線交拋物線于A,B兩點,則p=___________;弦AB的長為___________.16.寫出一個數(shù)列的通項公式____________,使它同時滿足下列條件:①,②,其中是數(shù)列的前項和.(寫出滿足條件的一個答案即可)三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)圖像在點處的切線方程為.(1)求實數(shù)、的值;(2)求函數(shù)在上的最值.18.(12分)已知橢圓C與橢圓有相同的焦點,且離心率為.(1)橢圓C的標準方程;(2)若橢圓C的兩個焦點,P是橢圓上的點,且,求的面積.19.(12分)在平面直角坐標系中,有一條長度為3的線段,端點,分別在軸、軸上運動,為線段上一點,且.(1)求點的軌跡的方程;(2)已知不過原點的直線與相交于,兩點,且線段始終被直線平分.求的面積取最大時直線的方程.20.(12分)如圖,在四棱錐中,為平行四邊形,,平面,且,點是的中點.(1)求證:平面;(2)在線段上(不含端點)是否存在一點,使得二面角的余弦值為?若存在,確定的位置;若不存在,請說明理由.21.(12分)已知橢圓的離心率為,右焦點為F,且E上一點P到F的最大距離3(1)求橢圓E的方程;(2)若A,B為橢圓E上的兩點,線段AB過點F,且其垂直平分線交x軸于H點,,求22.(10分)記為數(shù)列的前項和,且(1)求的通項公式;(2)設(shè),求數(shù)列的前項和
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】根據(jù)已知條件,利用等比數(shù)列的基本量列出方程,即可求得結(jié)果.【詳解】因為,故可得;解得.故選:C.2、D【解析】由平面的基本性質(zhì)結(jié)合公理即可判斷.【詳解】對于A,過不在一條直線上三點才能確定一個平面,故A不正確;對于B,經(jīng)過一條直線和直線外一個點確定一個平面,故B不正確;對于C,空間四邊形不能確定一個平面,故C不正確;對于D,兩兩相交且不共點的三條直線確定一個平面,故D正確.故選:D3、D【解析】由已知條件推導(dǎo)出,.由此利用裂項求和法能求出【詳解】解:由,可得,解得,則.∴,故選:【點睛】本題考查了函數(shù)的性質(zhì)、數(shù)列的“裂項求和”,考查了推理能力與計算能力,屬于中檔題4、D【解析】根據(jù)互斥事件和對立事件的定義判斷【詳解】當?shù)谝淮稳〕?,第二次取出4時,甲丙同時發(fā)生,不互斥不對立;第二次取出的球的數(shù)字是6與兩次取出的球的數(shù)字之和是5不可能同時發(fā)生,但可以同時不發(fā)生,不對立,當?shù)谝淮稳〕?,第二次取出3時,甲與丁同時發(fā)生,不互斥不對立,兩次取出的球的數(shù)字之和是5與兩次取出的球的數(shù)字之和是偶數(shù)不可以同時發(fā)生,但可以同時不發(fā)生,因此是互斥不對立故選:D5、C【解析】由題意可得,的方程為,設(shè)、,聯(lián)立直線與拋物線方程可求,利用拋物線的定義計算即可求解.【詳解】由上可得:焦點,直線的方程為,設(shè),,由,可得,則有,由拋物線的定義可得:,故選:C.6、A【解析】以A為原點建立空間直角坐標系,求出E,F,D,D1點的坐標,利用向量求法求解【詳解】如圖,以A為原點建立空間直角坐標系,設(shè)正方體的邊長為2,則,,,,,直線與所成角的余弦值為:.故選:A【點睛】本題考查異面直線所成角的求法,屬于基礎(chǔ)題.7、B【解析】求得傾斜角的正切值即得【詳解】k=tan120°=.故選:B8、C【解析】求出拋物線的焦點,設(shè)出直線方程,代入拋物線方程,運用韋達定理和向量坐標表示,解得,即可得出直線的方程.【詳解】解:拋物線的焦點,設(shè)直線為,則,整理得,則,.由可得,代入上式即可得,所以,整理得:.故選:C.【點睛】本題考查直線和拋物線的位置關(guān)系,主要考查韋達定理和向量共線的坐標表示,考查運算能力,屬于中檔題.9、D【解析】求得,根據(jù)的面積列方程,由此求得,進而求得雙曲線的漸近線方程.【詳解】依題意,雙曲線的一條漸近線為,則,所以,所以,所以.所以雙曲線漸近線方程為.故選:D【點睛】本小題主要考查雙曲線漸近線的有關(guān)計算,屬于中檔題.10、A【解析】分析:先求出A,B兩點坐標得到再計算圓心到直線距離,得到點P到直線距離范圍,由面積公式計算即可詳解:直線分別與軸,軸交于,兩點,則點P在圓上圓心為(2,0),則圓心到直線距離故點P到直線的距離的范圍為則故答案選A.點睛:本題主要考查直線與圓,考查了點到直線的距離公式,三角形的面積公式,屬于中檔題11、A【解析】在長方體中建立空間直角坐標系,求出相關(guān)點的坐標,進而求得向量,的坐標,利用向量的夾角公式即可求得答案.詳解】如圖,由題意可知DA,DC,兩兩垂直,則以D為原點,,的方向分別為x,y,z軸的正方向,建立空間直角坐標系.設(shè),則,,,,,,從而,故異面直線與所成角的余弦值是,故選:A.12、B【解析】求出焦點,則可得出,即可求出漸近線方程.【詳解】由橢圓可得焦點為,則設(shè)雙曲線方程為,可得,則離心率,解得,則,所以漸近線方程為.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】化簡橢圓的方程為標準形式,列出不等式,即可求解.【詳解】由題意,方程可化為,因為方程表示焦點在軸上的橢圓,可得,解得,實數(shù)的取值范圍是.故答案為:.14、【解析】構(gòu)造新函數(shù),求導(dǎo)根據(jù)導(dǎo)數(shù)大于等于零得到,構(gòu)造,求導(dǎo)得到單調(diào)區(qū)間,計算函數(shù)最小值得到答案.【詳解】當時,不等式恒成立,所以,所以在上是增函數(shù),,則上恒成立,即在上恒成立,令,則,當時,,當時,,所以,所以故答案為:15、①.6;②.48.【解析】先通過準線求出p,寫出拋物線方程和直線方程,聯(lián)立得出,進而求出弦AB的長.【詳解】由知準線方程為,又準線過(-3,3),可得,;焦點坐標為,故直線方程為,和拋物線方程聯(lián)立,,得,故,又.故答案為:6;48.16、(答案合理即可)【解析】當時滿足,利用作差比較法即可證明.【詳解】解:當時滿足條件①②,證明如下:因為,所以;當時,;當時,;綜上,.故答案為:(答案合理即可).三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)a=3,b=-9.(2)最小值=-24,最大值=8.【解析】由曲線在的值以及切線斜率容易確定a與b的值;根據(jù)導(dǎo)數(shù)很容易確定函數(shù)單調(diào)區(qū)間以及極值點.【小問1詳解】,,,由于切線方程是,當x=1時,y=-8,即,即=-8……①;又切線的斜率為-12,∴……②;聯(lián)立①②得.【小問2詳解】由(1)得:,;當時,,導(dǎo)函數(shù)圖像如下:在時,單調(diào)遞增,時,單調(diào)遞減,時單調(diào)遞增;∴在x=-1有極大值,x=3有極小值;在區(qū)間內(nèi):在x=-1有最大值;在x=3有最小值.18、(1)(2)【解析】(1)由題意求出即可求解;(2)由橢圓的定義和三角形面積公式求解即可【小問1詳解】因為橢圓C與橢圓有相同的焦點,所以橢圓C的焦點,,,又,所以,,所以橢圓C的標準方程為.【小問2詳解】由,,得,,而,所以,所以19、(1)(2)【解析】(1)設(shè),根據(jù)題意可得,,利用兩點之間的距離公式表示出,化簡即可得出結(jié)果;(2)設(shè),,線段的中點為,利用兩點坐標表示直線斜率的公式和點差法求出直線的斜率,設(shè)的方程為,聯(lián)立橢圓方程并消去y得到關(guān)于x的一元二次方程,根據(jù)韋達定理表示、進而得出弦長,利用點到直線的距離公式求出原點到的距離,結(jié)合基本不等式計算即可.【小問1詳解】設(shè),由為線段上一點,且,得,,又,則,整理可得,所以軌跡的方程為;【小問2詳解】設(shè),,線段的中點為.∵在直線上,∴,∵A,在軌跡上,∴兩式相減,可得,∴,即直線的斜率為,依題意,可設(shè)直線的方程為,由可得,則解得且由韋達定理,得,∴∵原點到直線的距離為∴,當且僅當,即時等號成立,即時,三角形的面積最大,此時直線的方程為.20、(1)見解析(2)存在,【解析】(1)連接交于點,由三角形中位線性質(zhì)知,由線面平行判定定理證得結(jié)論;(2)以為原點建立空間直角坐標系,假設(shè),可用表示出點坐標;根據(jù)二面角的向量求法可根據(jù)二面角的余弦值構(gòu)造出關(guān)于的方程,從而解得結(jié)果.【詳解】(1)連接交于點,連接,四邊形為平行四邊形,為中點,又為中點,,平面,平面,平面;(2)平面,,兩兩互相垂直,則以為坐標原點,可建立如下圖所示的空間直角坐標系:則,,,,,,設(shè),且,則,,即,設(shè)平面的法向量,又,,則,令,則,,;設(shè)平面的一個法向量,又,,則,令,則,,;,解得:或,二面角的余弦值為,二面角為銳二面角,不滿足題意,舍去,即.在線段上存在點,時,二面角的余弦值為.【點睛】本題考查立體幾何中的線面平行關(guān)系的證明、存在性問題的求解;求解存在性問題的關(guān)鍵是能夠利用共線向量的方式將所求點坐標表示出來,進而利用二面角的向量求法構(gòu)造方程;易錯點是忽略二面角的范圍,造成參數(shù)值求解錯誤.21、(1);(2)【解析】(1)根據(jù)離心率和最大距離建立等式即可求解;(2)根據(jù)弦長,求出直線方程,解出點的坐標即可得解.【詳解】(1)橢圓的離心率為,右焦點為F,且E上一點P到F的最大距離3,所以,所以,所以橢圓E的方程;(2)A,B為橢圓E上的兩點,線段AB過點F,且其垂直平分線交x軸于H點,所以線段A
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 歷史材料解析題(解題指導(dǎo)+專項練習(xí))(解析版)
- 紡織服裝業(yè)自購料采購管理辦法
- 教育培訓(xùn)機構(gòu)物業(yè)管理招標
- 村集體資產(chǎn)評估招標實施細則
- 高山道路擴建爆破協(xié)議
- 養(yǎng)老院護理工作制度
- 本溪市燃氣事故案例分析
- 租賃企業(yè)薪酬分配改革管理辦法
- 建筑工程租賃起重機協(xié)議
- 車牌互換合同范本模板
- TCECA-G 0171-2022 零碳工廠評價規(guī)范
- 幼兒園教學(xué)課件——我是哥哥姐姐
- ppt模板:青團團委團課動態(tài)ppt模板課件
- 國內(nèi)異形盾構(gòu)機分析課件
- 喚醒孩子內(nèi)驅(qū)力家校共育家庭教育PPT課件(帶內(nèi)容)
- 合成氣精脫硫催化劑的研究報告
- 滾裝客船貨物的積載綁扎系固分解課件
- 市政項目吊裝施工方案
- 中控樓裝飾裝修方案
- 新供應(yīng)商開發(fā)流程圖
- 學(xué)校及周邊環(huán)境集中整治工作臺帳
評論
0/150
提交評論