黑龍江省虎林市高級中學2025屆高二數學第一學期期末學業(yè)水平測試試題含解析_第1頁
黑龍江省虎林市高級中學2025屆高二數學第一學期期末學業(yè)水平測試試題含解析_第2頁
黑龍江省虎林市高級中學2025屆高二數學第一學期期末學業(yè)水平測試試題含解析_第3頁
黑龍江省虎林市高級中學2025屆高二數學第一學期期末學業(yè)水平測試試題含解析_第4頁
黑龍江省虎林市高級中學2025屆高二數學第一學期期末學業(yè)水平測試試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

黑龍江省虎林市高級中學2025屆高二數學第一學期期末學業(yè)水平測試試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知是橢圓兩個焦點,P在橢圓上,,且當時,的面積最大,則橢圓的標準方程為()A. B.C. D.2.為了了解1200名學生對學校某項教改實驗的意見,打算從中抽取一個容量為40的樣本,采用系統抽樣方法,則分段的間隔為()A.40 B.30C.20 D.123.設,向量,,,且,,則()A. B.C.3 D.44.已知命題p:?x>2,x2>2x,命題q:?x0∈R,ln(x02+1)<0,則下列命題是真命題的是()A.p∧ B.p∨C.p∧q D.p∨q5.已知四棱錐,平面PAB,平面PAB,底面ABCD是梯形,,,,滿足上述條件的四棱錐的頂點P的軌跡是()A.橢圓 B.橢圓的一部分C.圓 D.不完整的圓6.如圖,過拋物線的焦點的直線交拋物線于點、,交其準線于點,若,且,則的值為()A. B.C. D.7.函數在處的切線方程為()A. B.C. D.8.已知圓與圓外切,則()A. B.C. D.9.設的內角的對邊分別為的面積,則()A. B.C. D.10.數列,,,,…,的通項公式可能是()A. B.C. D.11.已知直線與直線垂直,則()A. B.C. D.12.為發(fā)揮我市“示范性高中”的輻射帶動作用,促進教育的均衡發(fā)展,共享優(yōu)質教育資源.現分派我市“示范性高中”的5名教師到,,三所薄弱學校支教,開展送教下鄉(xiāng)活動,每所學校至少分派一人,其中教師甲不能到學校,則不同分派方案的種數是()A.150 B.136C.124 D.100二、填空題:本題共4小題,每小題5分,共20分。13.已知過橢圓上的動點作圓(為圓心):的兩條切線,切點分別為,若的最小值為,則橢圓的離心率為______14.函數在處切線的斜率為_____15.若正實數滿足則的最小值為________________________16.在平面幾何中有如下結論:若正三角形的內切圓周長為,外接圓周長為,則.推廣到空間幾何可以得到類似結論:若正四面體的內切球表面積為,外接球表面積為,則__________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的離心率為,且經過點.(1)求橢圓的方程;(2)經過點的直線與橢圓交于不同的兩點,,為坐標原點,若的面積為,求直線的方程.18.(12分)圓的圓心為,且與直線相切,求:(1)求圓的方程;(2)過的直線與圓交于,兩點,如果,求直線的方程19.(12分)已知拋物線C:經過點(1,-1).(1)求拋物線C的方程及其焦點坐標;(2)過拋物線C上一動點P作圓M:的一條切線,切點為A,求切線長|PA|的最小值.20.(12分)已知圓C的圓心在直線上,且過點.(1)求圓C的方程;(2)若圓C與直線交于A,B兩點,且,求m的值.21.(12分)已知命題p:方程的曲線是焦點在y軸上的雙曲線;命題q:方程無實根.若p或q為真,¬q為真,求實數m的取值范圍.22.(10分)已知函數的圖象在點處的切線與直線平行(是自然對數的底數).(1)求的值;(2)若在上恒成立,求實數的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】由題意知c=3,當△F1PF2的面積最大時,點P與橢圓在y軸上的頂點重合,即可解出【詳解】由題意知c=3,當△F1PF2的面積最大時,點P與橢圓在y軸上的頂點重合,∵時,△F1PF2的面積最大,∴a==,b=∴橢圓的標準方程為故選:A2、B【解析】根據系統抽樣的概念,以及抽樣距的求法,可得結果.【詳解】由總數為1200,樣本容量為40,所以抽樣距為:故選:B【點睛】本題考查系統抽樣的概念,屬基礎題.3、C【解析】根據空間向量垂直與平行的坐標表示,求得的值,得到向量,進而求得,得到答案.【詳解】由題意,向量,,,因為,可得,解得,即,又因為,可得,解得,即,可得,所以.故選:C.4、B【解析】取x=4,得出命題p是假命題,由對數的運算得出命題q是假命題,再判斷選項.【詳解】命題p:?x>2,x2>2x,是假命題,例如取x=4,則42=24;命題q:?x0∈R,ln(x02+1)<0,是假命題,∵?x∈R,ln(x2+1)≥0.則下列命題是真命題的是.故選:B.5、D【解析】根據題意,分析得動點滿足的條件,結合圓以及橢圓的方程,以及點的限制條件,即可判斷軌跡.【詳解】因為平面PAB,平面PAB,則//,又面面,故可得;因為,故可得,則,綜上所述:動點在垂直的平面中,且滿足;為方便研究,不妨建立平面直角坐標系進行說明,在平面中,因為,以中點為坐標原點,以為軸,過且垂直于的直線為軸建立平面直角坐標系,如下所示:因為,故可得,整理得:,故動點的軌跡是一個圓;又當三點共線時,幾何體不是空間幾何體,故動點的軌跡是一個不完整的圓.故選:.【點睛】本題考察立體幾何中動點的軌跡問題,處理的關鍵是利用立體幾何知識,找到動點滿足的條件,進而求解軌跡.6、B【解析】分別過點、作準線的垂線,垂足分別為點、,設,根據拋物線的定義以及直角三角形的性質可求得,結合已知條件求得,分析出為的中點,進而可得出,即可得解.【詳解】如圖,分別過點、作準線的垂線,垂足分別為點、,設,則由己知得,由拋物線的定義得,故,在直角三角形中,,,因為,則,從而得,所以,,則為的中點,從而.故選:B.7、C【解析】利用導數的幾何意義即可求切線方程﹒【詳解】,,,,在處的切線為:,即﹒故選:C﹒8、D【解析】根據兩圓外切關系,圓心距離等于半徑的和列方程求參數.【詳解】由題設,兩圓圓心分別為、,半徑分別為1、r,∴由外切關系知:,可得.故選:D.9、A【解析】利用三角形面積公式、二倍角正弦公式有,再由三角形內角的性質及余弦定理化簡求即可.【詳解】由,∴,在中,,∴,解得.故選:A.10、D【解析】利用數列前幾項排除A、B、C,即可得解;【詳解】解:由,排除A,C,由,排除B,分母為奇數列,分子為,故數列的通項公式可以為,故選:D11、D【解析】根據互相垂直兩直線的斜率關系進行求解即可.【詳解】由,所以直線的斜率為,由,所以直線的斜率為,因為直線與直線垂直,所以,故選:D12、D【解析】對甲所在組的人數分類討論即得解.【詳解】當甲一個人去一個學校時,有種;當甲所在的學校有兩個老師時,有種;當甲所在的學校有三個老師時,有種;所以共有28+48+24=100種.故選:D【點睛】方法點睛:排列組合常用方法有:簡單問題直接法、小數問題列舉法、相鄰問題捆綁法、不相鄰問題插空法、至少問題間接法、復雜問題分類法、等概率問題縮倍法.要根據已知條件靈活選擇方法求解.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由橢圓方程和圓的方程可確定橢圓焦點、圓心和半徑;當最小時,可知,此時;根據橢圓性質知,解方程可求得,進而得到離心率.【詳解】由橢圓方程知其右焦點為;由圓的方程知:圓心為,半徑為;當最小時,則最小,即,此時最??;此時,;為橢圓右頂點時,,解得:,橢圓的離心率.故答案為:.14、1【解析】求得函數的導數,計算得,即可得到切線的斜率【詳解】由題意,函數,則,所以,即切線的斜率為1,故答案為:115、【解析】利用基本不等式即可求解.【詳解】,,又,,,當且僅當即,等號成立,.故答案為:【點睛】易錯點睛:利用基本不等式求最值時,要注意其必須滿足的三個條件:(1)“一正二定三相等”“一正”就是各項必須為正數;(2)“二定”就是要求和的最小值,必須把構成和的二項之積轉化成定值;要求積的最大值,則必須把構成積的因式的和轉化成定值;(3)“三相等”是利用基本不等式求最值時,必須驗證等號成立的條件,若不能取等號則這個定值就不是所求的最值,這也是最容易發(fā)生錯誤的地方.16、【解析】分析:平面圖形類比空間圖形,二維類比三維得到,類比平面幾何的結論,確定正四面體的外接球和內切球的半徑之比,即可求得結論.詳解:平面幾何中,圓的周長與圓的半徑成正比,而在空間幾何中,球的表面積與半徑的平方成正比,因為正四面體的外接球和內切球的半徑之比是,,故答案為.點睛:本題主要考查類比推理,屬于中檔題.類比推理問題,常見的類型有:(1)等差數列與等比數列的類比;(2)平面與空間的類比;(3)橢圓與雙曲線的類比;(4)復數與實數的類比;(5)向量與數的類比.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)或.【解析】(1)由離心率公式、將點代入橢圓方程得出橢圓的方程;(2)聯立橢圓和直線的方程,由判別式得出的范圍,再由韋達定理結合三角形面積公式得出,求出的值得出直線的方程.【詳解】解:(1)因為橢圓的離心率為,所以.①又因為橢圓經過點,所以有.②聯立①②可得,,,所以橢圓的方程為.(2)由題意可知,直線的斜率存在,設直線的方程為.由消去整理得,.因為直線與橢圓交于不同兩點,所以,即,所以設,,則,.由題意得,面積,即.因為的面積為,所以,即.化簡得,,即,解得或,均滿足,所以或.所以直線的方程為或.【點睛】關鍵點睛:在第二問中,關鍵是由韋達定理建立的關系,結合三角形面積公式求出斜率,得出直線的方程.18、(1)(2)或【解析】由點到直線的距離公式求得圓的半徑,則圓的方程可求;當直線的斜率不存在時,求得弦長為,滿足題意;當直線的斜率不存在時,設出直線方程,求出圓心到直線的距離,再由垂徑定理列式求,則直線方程可求【小問1詳解】由題意得:圓的半徑為,則圓的方程為;【小問2詳解】當直線的斜率不存在時,直線方程為,得,符合題意;當直線的斜率存在時,設直線方程為,即圓心到直線的距離,則,解得直線的方程為直線的方程為或19、(1),焦點坐標為;(2)【解析】(1)將點代入拋物線方程求解出的值,則拋物線方程和焦點坐標可知;(2)設出點坐標,根據切線垂直于半徑,根據點到點距離公式表示出,然后結合二次函數的性質求解出的最小值.【小問1詳解】解:因為拋物線過點,所以,解得,所以拋物線的方程為:,焦點坐標為;【小問2詳解】解:設,因為為圓的切線,所以,,所以,所以當時,四邊形有最小值且最小值為.20、(1)(2)或【解析】(1)由已知設圓C的方程為,點代入計算即可得出結果.(2)由已知可得圓心C到直線的距離,利用點到直線的距離公式計算即可求得值.【小問1詳解】設圓心坐標為,半徑為,圓C的圓心在直線上,.則圓C的方程為,圓C過點,則,解得:則,圓C的圓心坐標為.則圓C的方程為;【小問2詳解】圓心C到直線的距離.則,解得或21、.【解析】計算命題p:;命題;根據p或q為真,¬q為真得到真假,計算得到答案.【詳解】若方程的曲線是焦點在軸上的雙曲線,則滿足,即,即,即若方程無實根,則判別式,即,得,即,即若為真,則為假,同時若或

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論