版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2025屆臨川一中實驗學(xué)校高二數(shù)學(xué)第一學(xué)期期末預(yù)測試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.不等式的解集為()A.或 B.C. D.2.已知函數(shù)有兩個極值點m,n,且,則的最大值為()A. B.C. D.3.阿波羅尼斯是古希臘著名數(shù)學(xué)家,與歐幾里得、阿基米德并稱為亞歷山大時期數(shù)學(xué)三巨匠,他對圓錐曲線有深刻而系統(tǒng)的研究,主要研究成果集中在他的代表作《圓錐曲線》一書,阿波羅尼斯圓就是他的研究成果之一.指的是:已知動點與兩定點的距離之比,那么點的軌跡就是阿波羅尼斯圓.已知動點的軌跡是阿波羅尼斯圓,其方程為,其中,定點為軸上一點,定點的坐標(biāo)為,若點,則的最小值為()A. B.C. D.4.在棱長為1的正方體中,為的中點,則點到直線的距離為()A. B.1C. D.5.已知數(shù)列滿足,且,則的值為()A.3 B.C. D.6.已知點,在雙曲線上,線段的中點,則()A. B.C. D.7.在等比數(shù)列中,,是方程的兩個實根,則()A.-1 B.1C.-3 D.38.將的展開式按x的降冪排列,第二項不大于第三項,若,且,則實數(shù)x的取值范圍是()A. B.C. D.9.已知,,且,則向量與的夾角為()A. B.C. D.10.已知點是橢圓上的一點,點,則的最小值為A. B.C. D.11.“”是“直線和直線垂直”的()A.充分非必要條件 B.必要非充分條件C.充要條件 D.既非充分又非必要條件12.設(shè)雙曲線的離心率為,則下列命題中是真命題的為()A.越大,雙曲線開口越小 B.越小,雙曲線開口越大C.越大,雙曲線開口越大 D.越小,雙曲線開口越大二、填空題:本題共4小題,每小題5分,共20分。13.在下列所示電路圖中,下列說法正確的是____(填序號)(1)如圖①所示,開關(guān)A閉合是燈泡B亮的充分不必要條件;(2)如圖②所示,開關(guān)A閉合是燈泡B亮的必要不充分條件;(3)如圖③所示,開關(guān)A閉合是燈泡B亮的充要條件;(4)如圖④所示,開關(guān)A閉合是燈泡B亮的必要不充分條件14.過雙曲線的右焦點作一條與其漸近線平行的直線,交于點.若點的橫坐標(biāo)為,則的離心率為-.15.已知動圓P過定點,且在定圓的內(nèi)部與其相內(nèi)切,則動圓P的圓心的軌跡方程為______16.若函數(shù)的遞增區(qū)間是,則實數(shù)______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)當(dāng)時,求曲線在點處的切線方程;(2)試討論函數(shù)的單調(diào)性.18.(12分)在平面直角坐標(biāo)系xOy中,橢圓C的左,右焦點分別為F1(﹣,0),F(xiàn)2(,0),且橢圓C過點(﹣).(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)設(shè)過(0,﹣2)的直線l與橢圓C交于M,N兩點,O為坐標(biāo)原點,若,求直線l的方程.19.(12分)2020年10月,中共中央辦公廳、國務(wù)院辦公廳印發(fā)了《關(guān)于全面加強和改進新時代學(xué)校體育工作的意見》,某地積極開展中小學(xué)健康促進行動,發(fā)揮以體育智、以體育心功能,決定在2021年體育中考中再增加一定的分?jǐn)?shù),規(guī)定:考生須參加立定跳遠、擲實心球、一分鐘跳繩三項測試,其中一分鐘跳繩滿分20分,某校為掌握九年級學(xué)生一分鐘跳繩情況,隨機抽取了100名學(xué)生測試,其一分一分鐘跳繩個數(shù)成績(分)1617181920頻率(1)若每分鐘跳繩成績不足18分,則認(rèn)為該學(xué)生跳繩成績不及格,求在進行測試的100名學(xué)生中跳繩成績不及格的人數(shù)為多少?(2)該學(xué)校決定由這次跳繩測試一分鐘跳繩個數(shù)在205以上(包括205)的學(xué)生組成“小小教練員"團隊,小明和小華是該團隊的成員,現(xiàn)學(xué)校要從該團隊中選派2名同學(xué)參加某跳繩比賽,求小明和小華至少有一人被選派的概率20.(12分)已知橢圓的左、右焦點分別為,,點在橢圓C上,且滿足(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)設(shè)直線與橢圓C交于不同的兩點M,N,且(O為坐標(biāo)原點).證明:總存在一個確定的圓與直線l相切,并求該圓的方程21.(12分)已知橢圓的短軸長是2,且離心率為(1)求橢圓E的方程;(2)已知,若直線與橢圓E相交于A,B兩點,線段AB的中點為M,是否存在常數(shù),使恒成立,并說明理由22.(10分)如圖,在多面體ABCEF中,和均為等邊三角形,D是AC的中點,(1)證明:(2)若平面平面ACE,求二面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】根據(jù)一元二次不等式的解法可得答案.【詳解】由不等式可得或不等式的解集為或故選:A2、C【解析】對求導(dǎo)得,得到m,n是兩個根,由根與系數(shù)的關(guān)系可得m,n的關(guān)系,然后構(gòu)造函數(shù),利用導(dǎo)數(shù)求單調(diào)性,進而得最值.【詳解】由得:m,n是兩個根,由根與系數(shù)的關(guān)系得:,故,令記,則,故在上單調(diào)遞減.故選:C3、D【解析】設(shè),,根據(jù)和求出a的值,由,兩點之間直線最短,可得的最小值為,根據(jù)坐標(biāo)求出即可.【詳解】設(shè),,所以,由,所以,因為且,所以,整理可得,又動點M的軌跡是,所以,解得,所以,又,所以,因為,所以的最小值,當(dāng)M在位置或時等號成立.故選:D4、B【解析】建立空間直角坐標(biāo)系,利用空間向量點到直線的距離公式進行求解即可【詳解】建立如圖所示的空間直角坐標(biāo)系,由已知,得,,,,,所以在上的投影為,所以點到直線的距離為故選:B5、B【解析】根據(jù)題意,依次求出,觀察規(guī)律,進而求出數(shù)列的周期,然后通過周期性求得答案.【詳解】因為數(shù)列滿足,,所以,所以,,,可知數(shù)列具有周期性,周期為3,,所以.故選:B6、D【解析】先根據(jù)中點弦定理求出直線的斜率,然后求出直線的方程,聯(lián)立后利用弦長公式求解的長.【詳解】設(shè),,則可得方程組:,兩式相減得:,即,其中因為的中點為,故,故,即直線的斜率為,故直線的方程為:,聯(lián)立,解得:,由韋達定理得:,,則故選:D7、B【解析】由韋達定理可知,結(jié)合等比中項的性質(zhì)可求出.【詳解】解:在等比數(shù)列中,由題意知:,,所以,,所以且,即.故選:B.8、A【解析】按照二項展開式展開表示出第二項第三項,解不等式即可.【詳解】由二項展開式,第二項為:,第三項為:,依題意,兩邊約去得到,即,由知,則,同時約去得到.故選:A.9、B【解析】先求出向量與的夾角的余弦值,即可求出與的夾角.【詳解】,所以,∴,∴,∴,又∵,∴與的夾角為.故選:B.10、D【解析】設(shè),則,.所以當(dāng)時,的最小值為.故選D.11、A【解析】根據(jù)直線垂直求出值即可得答案.【詳解】解:若直線和直線垂直,則,解得或,則“”是“直線和直線垂直”的充分非必要條件.故選:A.12、C【解析】根據(jù)雙曲線的性質(zhì)結(jié)合離心率對雙曲線開口大小的影響即可得解.【詳解】解:對于A,越大,雙曲線開口越大,故A錯誤;對于B,越小,雙曲線開口越小,故B錯誤;對于C,由,越大,則越大,雙曲線開口越大,故C正確;對于D,越小,則越小,雙曲線開口越小,故D錯誤.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、(1)(2)(3)【解析】充分不必要條件是該條件成立時,可推出結(jié)果,但結(jié)果不一定需要該條件成立;必要條件是有結(jié)果必須有這一條件,但是有這一條件還不夠;充要條件是條件和結(jié)果可以互推;條件和結(jié)果沒有互推關(guān)系的是既不充分也不必要條件【詳解】(1)開關(guān)閉合,燈泡亮;而燈泡亮?xí)r,開關(guān)不一定閉合,所以開關(guān)閉合是燈泡亮的充分不必要條件,選項(1)正確.(2)開關(guān)閉合,燈泡不一定亮;而燈泡亮?xí)r,開關(guān)必須閉合,所以開關(guān)閉合是燈泡亮的必要不充分條件,選項(2)正確.(3)開關(guān)閉合,燈泡亮;而燈泡亮?xí)r,開關(guān)必須閉合,所以開關(guān)閉合是燈泡亮的充要條件,選項(3)正確.(4)開關(guān)閉合,燈泡不一定亮;而燈泡亮?xí)r,開關(guān)不一定閉合,所以開關(guān)閉合是燈泡亮的既不充分也不必要條件,選項(4)錯誤.故答案為(1)(2)(3).14、【解析】雙曲線的右焦點為.不妨設(shè)所作直線與雙曲線的漸近線平行,其方程為,代入求得點的橫坐標(biāo)為,由,得,解之得,(舍去,因為離心率),故雙曲線的離心率為.考點:1.雙曲線的幾何性質(zhì);2.直線方程.15、【解析】設(shè)切點為,根據(jù)題意,列出點滿足的關(guān)系式即.則點的軌跡是橢圓,然后根據(jù)橢圓的標(biāo)準(zhǔn)方程求點的軌跡方程【詳解】設(shè)動圓和定圓內(nèi)切于點,動點到定點和定圓圓心距離之和恰好等于定圓半徑,即,點的軌跡是以,為兩焦點,長軸長為10的橢圓,,點的軌跡方程為,故答案:16、【解析】求得二次函數(shù)的單調(diào)增區(qū)間,即可求得參數(shù)的值.【詳解】因為二次函數(shù)開口向上,對稱軸為,故其單調(diào)增區(qū)間為,又由題可知:其遞增區(qū)間是,故.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)詳見解析.【解析】(1)由,求導(dǎo),得到,寫出切線方程;(2)求導(dǎo),再分,,討論求解.【小問1詳解】解:因為,所以,則,所以,所以曲線在點處的切線方程是,即;【小問2詳解】因為,所以,當(dāng)時,成立,則在上遞減;當(dāng)時,令,得,當(dāng)時,,當(dāng)時,,所以在上遞減,在上遞增;綜上:當(dāng)時,在上遞減;當(dāng)時,在上遞減,在上遞增;18、(1)(2)或.【解析】(1)設(shè)標(biāo)準(zhǔn)方程代入點的坐標(biāo),解方程組得解.(2)設(shè)直線方程代入橢圓方程消元,韋達定理整體思想,可得直線斜率得解.【小問1詳解】因為橢圓C的焦點為,可設(shè)橢圓C的方程為,又點在橢圓C上,所以,解得,因此,橢圓C的方程為;【小問2詳解】當(dāng)直線的斜率不存在時,顯然不滿足題意;當(dāng)直線的斜率存在時,設(shè)直線的方程為,設(shè),,因為,所以,因為,,所以,所以,①聯(lián)立方程,消去得,則,代入①,得,解得,經(jīng)檢驗,此時直線與橢圓相交,所以直線l的方程是或.19、(1)14人;(2).【解析】(1)根據(jù)頻率直方表區(qū)間成績及其對應(yīng)的頻率,即可求每分鐘跳繩成績不足18分的人數(shù).(2)由表格數(shù)據(jù)求出一分鐘跳繩個數(shù)在205以上(包括205)的學(xué)生共6人,列舉出六人中選兩人參加比賽的所有情況、小明和小華至少有一個被選派的情況,由古典概型的概率求法即可得小明和小華至少有一人被選派的概率.【詳解】(1)由表可知,每分鐘跳繩成績不足18分,即為成績是16分或17分,在進行測試的100名學(xué)生中跳繩成績不及格人數(shù)為:人)(2)一分鐘跳繩個數(shù)在205以上(包括205)的學(xué)生頻率為,其人數(shù)為:(人),記小明為,小華為,其余四人為,則在這六人中選兩人參加比賽的所有情況為:,共15種,其中小明和小華至少有一個被選派的情況有:,共9種,小明和小華至少有一人被選派的概率為:.20、(1);(2)理由見解析,圓的方程為.【解析】(1)根據(jù)給定條件可得,結(jié)合勾股定理、橢圓定義求出a,b得解.(2)聯(lián)立直線l與橢圓C的方程,利用給定條件求出k,m的關(guān)系,再求出原點O到直線l的距離即可推理作答.【小問1詳解】因,則,點在橢圓C上,則橢圓C的半焦距,,,因此,,解得,,所以橢圓C的標(biāo)準(zhǔn)方程是:.【小問2詳解】由消去y并整理得:,依題意,,設(shè),,因,則,于是得,此時,,則原點O到直線l的距離,所以,存在以原點O為圓心,為半徑的圓與直線l相切,此圓的方程為.【點睛】思路點睛:涉及動直線與圓錐曲線相交滿足某個條件問題,可設(shè)直線方程為,再與圓錐曲線方程聯(lián)立結(jié)合已知條件探求k,m的關(guān)系,然后推理求解.21、(1);(2)存在,理由見解析.【解析】(1)利用離心率,短軸長求出a,b,即可求得橢圓方程.(2)聯(lián)立直線與橢圓方程,利用韋達定理計算判定,由M為線段AB中點即可確定存在常數(shù)推理作答.【小問1詳解】因橢圓的短軸長是2,則,而離心率,解得,所以橢圓方程為.【小問2詳解】存在常數(shù),使恒成立,
由消去y并整理得:,設(shè),,則,,又,,,則有,而線段AB的中點為M,于是得,并且有所以存在常數(shù),使恒成立.22、(1)證明見解析(2)【解析】(1)根據(jù)等腰三角形三線合一的性質(zhì)得到、,即可得到平面,再根據(jù),即可得證;(2)由面
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度★虛擬現(xiàn)實(VR)軟件開發(fā)合同范本
- 2024年綠色建筑暖氣管線施工合同
- 二零二五年度城市景觀帶草花苗木種植合作協(xié)議3篇
- 軟基換填專項方案
- 2024年期房屋安置選購合同樣本版B版
- 二零二五年度辦公室文員勞動合同模板設(shè)計與要點解析2篇
- 2024版設(shè)備維修與保養(yǎng)服務(wù)合同
- 二零二五年度城市道路橋梁施工三方合同范本2篇
- 二零二五年度合資成立新材料研發(fā)公司合同范本3篇
- 2024慶典活動贊助商招募與品牌合作合同3篇
- 《XL集團破產(chǎn)重整方案設(shè)計》
- 智慧金融合同施工承諾書
- 術(shù)后甲狀旁腺功能減退癥管理專家共識
- 【7道期末】安徽省安慶市區(qū)2023-2024學(xué)年七年級上學(xué)期期末道德與法治試題(含解析)
- 2024年01月22094法理學(xué)期末試題答案
- 2024年1月國家開放大學(xué)法律事務(wù)??啤睹穹▽W(xué)(1)》期末紙質(zhì)考試試題及答案
- 學(xué)校2024-2025學(xué)年教研工作計劃
- 煙草執(zhí)法課件教學(xué)課件
- 2024年安全文化建設(shè)實施方案
- 康復(fù)治療技術(shù)歷年真題單選題100道及答案
- 數(shù)字化交付施工方案
評論
0/150
提交評論