版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2025屆廣東省新興第一中學高二上數(shù)學期末質(zhì)量跟蹤監(jiān)視模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在各項都為正數(shù)的等比數(shù)列中,首項,前3項和為21,則()A.84 B.72C.33 D.1892.阿波羅尼斯是古希臘著名數(shù)學家,與歐幾里得、阿基米德并稱為亞歷山大時期數(shù)學三巨匠,他對圓錐曲線有深刻而系統(tǒng)的研究,主要研究成果集中在他的代表作《圓錐曲線》一書,阿波羅尼斯圓就是他的研究成果之一.指的是:已知動點與兩定點的距離之比,那么點的軌跡就是阿波羅尼斯圓.已知動點的軌跡是阿波羅尼斯圓,其方程為,其中,定點為軸上一點,定點的坐標為,若點,則的最小值為()A. B.C. D.3.已知數(shù)據(jù)的平均數(shù)是,方差是4,則數(shù)據(jù)的方差是()A.3.4 B.3.6C.3.8 D.44.已知的周長為,頂點、的坐標分別為、,則點的軌跡方程為()A. B.C. D.5.如圖,在平行六面體中,,則與向量相等的是()A. B.C. D.6.在等差數(shù)列中,,則等于A.2 B.18C.4 D.97.下列命題中正確的個數(shù)為()①若向量,與空間任意向量都不能構成基底,則;②若向量,,是空間一組基底,則,,也是空間的一組基底;③為空間一組基底,若,則;④對于任意非零空間向量,,若,則A.1 B.2C.3 D.48.(文科)已知點為曲線上的動點,為圓上的動點,則的最小值是A.3 B.5C. D.9.曲線的離心率為()A. B.C. D.10.已知雙曲線C:(a>0,b>0),斜率為的直線與雙曲線交于不同的兩點,且線段的中點為P(2,4),則雙曲線的漸近線方程為()A. B.C. D.11.若變量x,y滿足約束條件,則目標函數(shù)最大值為()A.1 B.-5C.-2 D.-712.拋物線的頂點在原點,對稱軸是x軸,點在拋物線上,則拋物線的方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在三棱錐中,點Р在底面ABC內(nèi)的射影為Q,若,則點Q定是的______心14.已知向量,,不共線,點在平面內(nèi),若存在實數(shù),,,使得,那么的值為________.15.直線的傾斜角為_______________.16.若命題“,使得”為假命題,則實數(shù)a的取值范圍是___________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設p:;q:關于x的方程無實根.(1)若q為真命題,求實數(shù)k的取值范圍;(2)若是假命題,且是真命題,求實數(shù)k的取值范圍.18.(12分)等差數(shù)列的前項和為,數(shù)列是等比數(shù)列,滿足,,,.(1)求數(shù)列和的通項公式;(2)令,設數(shù)列的前項和為,求.19.(12分)已知數(shù)列的前n項和為,,,其中.(1)記,求證:是等比數(shù)列;(2)設,數(shù)列的前n項和為,求證:.20.(12分)如圖所示,在直四棱柱中,底面ABCD是菱形,點E,F(xiàn)分別在棱,上,且,(1)證明:點在平面BEF內(nèi);(2)若,,,求直線與平面BEF所成角的正弦值21.(12分)已知過拋物線的焦點F且斜率為1的直線l交C于A,B兩點,且(1)求拋物線C的方程;(2)求以C的準線與x軸的交點D為圓心且與直線l相切的圓的方程22.(10分)設橢圓:的左頂點為,右頂點為.已知橢圓的離心率為,且以線段為直徑的圓被直線所截得的弦長為.(1)求橢圓的標準方程;(2)設過點的直線與橢圓交于點,且點在第一象限,點關于軸對稱點為點,直線與直線交于點,若直線斜率大于,求直線的斜率的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】分析:設等比數(shù)列的公比為,根據(jù)前三項的和為列方程,結合等比數(shù)列中,各項都為正數(shù),解得,從而可以求出的值.詳解:設等比數(shù)列的公比為,首項為3,前三項的和為,,解之得或,在等比數(shù)列中,各項都為正數(shù),公比為正數(shù),舍去),,故選A.點睛:本題考查以一個特殊的等比數(shù)列為載體,通過求連續(xù)三項和的問題,著重考查了等比數(shù)列的通項,等比數(shù)列的性質(zhì)和前項和等知識點,屬于簡單題.2、D【解析】設,,根據(jù)和求出a的值,由,兩點之間直線最短,可得的最小值為,根據(jù)坐標求出即可.【詳解】設,,所以,由,所以,因為且,所以,整理可得,又動點M的軌跡是,所以,解得,所以,又,所以,因為,所以的最小值,當M在位置或時等號成立.故選:D3、B【解析】利用方差的定義即可解得.【詳解】由方差的定義,,則,所以數(shù)據(jù)的方差為:.故選:B4、D【解析】分析可知點的軌跡是除去長軸端點的橢圓,求出、的值,結合橢圓焦點的位置可得出頂點的軌跡方程.【詳解】由已知可得,,且、、三點不共線,故點的軌跡是以、為焦點,且除去長軸端點的橢圓,由已知可得,得,,則,因此,點的軌跡方程為.故選:D.5、A【解析】根據(jù)空間向量的線性運算法則——三角形法,準確運算,即可求解.【詳解】由題意,在平行六面體中,,可得.故選:A.6、D【解析】利用等差數(shù)列性質(zhì)得到,,計算得到答案.詳解】等差數(shù)列中,故選D【點睛】本題考查了等差數(shù)列的計算,利用性質(zhì)可以簡化運算,是解題的關鍵.7、C【解析】根據(jù)題意、空間向量基底的概念和共線的運算即可判斷命題①②③,根據(jù)空間向量的平行關系即可判斷命題④.【詳解】①:向量與空間任意向量都不能構成一個基底,則與共線或與其中有一個為零向量,所以,故①正確;②:由向量是空間一組基底,則空間中任意一個向量,存在唯一的實數(shù)組使得,所以也是空間一組基底,故②正確;③:由為空間一組基底,若,則,所以,故③正確;④:對于任意非零空間向量,,若,則存在一個實數(shù)使得,有,又中可以有為0的,分式?jīng)]有意義,故④錯誤.故選:C8、A【解析】數(shù)形結合分析可得,當時能夠取得的最小值,根據(jù)點到圓心的距離減去半徑求解即可.【詳解】由對勾函數(shù)的性質(zhì),可知,當且僅當時取等號,結合圖象可知當A點運動到時能使點到圓心的距離最小,最小為4,從而的最小值為.故選:A【點睛】本題考查兩動點間距離的最值問題,考查轉(zhuǎn)化思想與數(shù)形結合思想,屬于中檔題.9、C【解析】由曲線方程直接求離心率即可.【詳解】由題設,,,∴離心率.故選:C.10、C【解析】設,代入雙曲線方程相減后可求得,從而得漸近線方程【詳解】設,則,相減得,∴,又線段的中點為P(2,4),的斜率為1,∴,,∴漸近線方程為故選:C【點睛】方法點睛:本題考查求雙曲線的漸近線方程,已知弦的中點(或涉及到中點),可設弦兩端點的坐標,代入雙曲線方程后作差,作差后式子中有直線的斜率,弦中點坐標,有.這種方法叫點差法11、A【解析】作出不等式組對應的平面區(qū)域,利用目標函數(shù)的幾何意義,進行求最值即可【詳解】解:由得作出不等式組對應的平面區(qū)域如圖(陰影部分平移直線,由圖象可知當直線,過點時取得最大值,由,解得,所以代入目標函數(shù),得,故選:A12、B【解析】首先根據(jù)題意設出拋物線的方程,利用點在曲線上的條件為點的坐標滿足曲線的方程,代入求得參數(shù)的值,最后得到答案.【詳解】解:根據(jù)題意設出拋物線的方程,因為點在拋物線上,所以有,解得,所以拋物線的方程是:,故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、外【解析】由可得,故是的外心.【詳解】解:如圖,∵點在底面ABC內(nèi)的射影為,∴平面又∵平面、平面、平面,∴、、.在和中,,∴,∴同理可得:,故故是的外心.故答案為:外.14、1【解析】通過平面向量基本定理推導出空間向量基本定理得推論.【詳解】因為點在平面內(nèi),則由平面向量基本定理得:存在,使得:即,整理得:,又,所以,,,從而.故答案為:115、【解析】由直線的斜率為,得到,即可求解.【詳解】由題意,可知直線的斜率為,設直線的傾斜角為,則,解得,即換線的傾斜角為.【點睛】本題主要考查直線的傾斜角的求解問題,其中解答中熟記直線的傾斜角與斜率的關系,合理準確計算是解答的關鍵,著重考查了運算與求解能力,屬于基礎題.16、(-1,0]【解析】將題意的命題轉(zhuǎn)化條件為“,”為真命題,結合一元二次不等式恒成立即可得解.【詳解】因為命題“,使得”是假命題,所以其否定“,”為真命題,即在R上恒成立.當時,不等式為,符合題意;當時,則需滿足,解得;綜上,實數(shù)的取值范圍為.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)根據(jù)命題的真假,結合一元二次方程無實根,列出的不等式,即可求得結果;(2)求得命題為真對應的的范圍,結合命題一個為真命題一個為假命題,即可列出的不等式組,求解即可.【小問1詳解】若q為真命題,則,解得,即實數(shù)k的取值范圍為.【小問2詳解】若p為真,,解得,由是假命題,且是真命題,得:p、q兩命題一真一假,當p真q假時,或,得,當p假q真時,,此時無解.綜上的取值范圍為.18、(1),(2)【解析】(1)根據(jù)條件列關于公差與公比的方程組,解方程組可得再根據(jù)等差數(shù)列與等比數(shù)列通項公式得結果(2)根據(jù)錯誤相減法求數(shù)列的前項和為,注意作差時項符號的變化以及求和時項數(shù)的確定試題解析:(1)設數(shù)列的公差為,數(shù)列的公比為,則由得解得所以,.(2)由(1)可知,∴①②①—②得:,∴.點睛:用錯位相減法求和應注意的問題(1)要善于識別題目類型,特別是等比數(shù)列公比為負數(shù)的情形;(2)在寫出“”與“”的表達式時應特別注意將兩式“錯項對齊”以便下一步準確寫出“”的表達式;(3)在應用錯位相減法求和時,若等比數(shù)列的公比為參數(shù),應分公比等于1和不等于1兩種情況求解.19、(1)證明見解析;(2)證明見解析.【解析】(1)應用的關系,結合構造法可得,根據(jù)已知條件及等比數(shù)列的定義即可證結論.(2)由(1)得,再應用錯位相減法求,即可證結論.【小問1詳解】證明:對任意的,,,時,,解得,時,因為,,兩式相減可得:,即有,∴,又,則,因為,,所以,對任意的,,所以,因此,是首項和公比均為3的等比數(shù)列【小問2詳解】由(1)得:,則,,,兩式相減得:,化簡可得:,又,∴.20、(1)證明見解析;(2).【解析】(1)設、、、AC與BD的交點為O,由直四棱柱的性質(zhì)構建空間直角坐標系,確定、的坐標可得,即可證結論.(2)由題設,求出、、的坐標,進而求得面BEF的法向量,利用空間向量夾角的坐標表示求直線與平面BEF所成角的正弦值【小問1詳解】由題意,,設,,,設AC與BD的交點為O,以O為坐標原點,分別以BD,AC所在直線為x,y軸建立如下空間直角坐標系,則,,,,所以,,得,即,因此點在平面BEF內(nèi)【小問2詳解】由(1)及題設,,,,,所以,,設為平面BEF的法向量,則,令,即設直線與平面BEF所成角為,則21、(1);(2)【解析】(1)首先表示出直線l的方程,再聯(lián)立直線與拋物線方程,消去,列出韋達定理,再根據(jù)焦點弦公式計算可得;(2)由(1)可得,再利用點到直線的距離求出半徑,即可求出圓的方程;【詳解】解析:(1)由已知得點,∴直線l的方程為,聯(lián)立去,消去整理得設,,則,,∴拋物線C的方程為(2)由(1)可得,直線l的方程為,∴圓D的半徑,∴圓D的方程為【點睛】本題考查拋物線的簡單幾何性質(zhì),屬于中檔題.22、
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024-2030年全球及中國電源煙霧報警器行業(yè)銷售情況及營銷前景預測報告
- 2024年攜手共創(chuàng):房地產(chǎn)銷售戰(zhàn)略聯(lián)盟協(xié)議
- 2024年技術工種合同:技能要求與職業(yè)培訓
- 2024年健身器材專賣店加盟合同
- 2024-2030年全球及中國1,3丙二醇(PDO)行業(yè)供需現(xiàn)狀與投資前景展望報告
- 2024-2030年全球與中國冰雪運動維修保養(yǎng)設備市場應用現(xiàn)狀及需求前景預測報告
- 2024-2030年中國高端女裝行業(yè)市場營銷模式及投資策略分析報告
- 2024年度數(shù)據(jù)中心機房租賃合同
- 2024-2030年中國非處方藥(OTC)行業(yè)競爭趨勢及投資戰(zhàn)略研究報告
- 2024-2030年中國陶瓷茶具行業(yè)市場營銷模式及發(fā)展競爭力分析報告版
- 2024年安全生產(chǎn)知識競賽考試題庫及答案(共五套)
- 22《鳥的天堂》課件
- 農(nóng)業(yè)灌溉裝置市場環(huán)境與對策分析
- 新疆烏魯木齊市第十一中學2024-2025學年八年級上學期期中道德與法治試卷
- 2024年江西省高考地理真題(原卷版)
- 部編版小學五年級上冊道法課程綱要(知識清單)
- 經(jīng)濟法學-計分作業(yè)一(第1-4章權重25%)-國開-參考資料
- 山東省臨沂市(2024年-2025年小學四年級語文)人教版期中考試(上學期)試卷及答案
- 護士2024思想?yún)R報5篇
- 2024年新版全員消防安全知識培訓
- Unit+10+Lesson+1+How+Closely+Connected+Are+We 高中英語北師大版(2019)選擇性必修第四冊
評論
0/150
提交評論