版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
山東省莒縣實(shí)驗(yàn)中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末考試模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫(huà)出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.下列推理中屬于歸納推理且結(jié)論正確的是()A.由,求出,,,…,推斷:數(shù)列的前項(xiàng)和B.由滿(mǎn)足對(duì)都成立,推斷:為奇函數(shù)C.由半徑為的圓的面積,推斷單位圓的面積D.由,,,…,推斷:對(duì)一切,2.拋擲兩枚硬幣,若記出現(xiàn)“兩個(gè)正面”“兩個(gè)反面”“一正一反”的概率分別為,,,則下列判斷中錯(cuò)誤的是().A. B.C. D.3.在空間四邊形中,,,,且,則()A. B.C. D.4.已知是橢圓與雙曲線(xiàn)的公共焦點(diǎn),P是它們的一個(gè)公共點(diǎn),且,線(xiàn)段的垂直平分線(xiàn)過(guò),若橢圓的離心率為,雙曲線(xiàn)的離心率為,則的最小值為()A. B.3C.6 D.5.連續(xù)拋擲一枚均勻硬幣3次,事件“至少2次出現(xiàn)正面”的對(duì)立事件是()A.只有2次出現(xiàn)反面 B.至少2次出現(xiàn)正面C.有2次或3次出現(xiàn)正面 D.有2次或3次出現(xiàn)反面6.以下命題是真命題的是()A.方差和標(biāo)準(zhǔn)差都是刻畫(huà)樣本數(shù)據(jù)分散程度的統(tǒng)計(jì)量B.若m為數(shù)據(jù)(i=1,2,3,····,2021)的中位數(shù),則C.回歸直線(xiàn)可能不經(jīng)過(guò)樣本點(diǎn)的中心D.若“”為假命題,則均為假命題7.若函數(shù)有兩個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是()A. B.C. D.8.在四棱錐中,底面ABCD是正方形,側(cè)棱底面ABCD,,點(diǎn)E是棱PC的中點(diǎn),作,交PB于F.下面結(jié)論正確的個(gè)數(shù)為()①∥平面EDB;②平面EFD;③直線(xiàn)DE與PA所成角為60°;④點(diǎn)B到平面PAC的距離為.A.1 B.2C.3 D.49.過(guò)雙曲線(xiàn)(,)的左焦點(diǎn)作圓:的兩條切線(xiàn),切點(diǎn)分別為,,雙曲線(xiàn)的左頂點(diǎn)為,若,則雙曲線(xiàn)的漸近線(xiàn)方程為()A. B.C. D.10.曲線(xiàn)上存在兩點(diǎn)A,B到直線(xiàn)到距離等于到的距離,則()A.12 B.13C.14 D.1511.拋物線(xiàn)的焦點(diǎn)坐標(biāo)是A. B.C. D.12.已知直線(xiàn)l與圓交于A,B兩點(diǎn),點(diǎn)滿(mǎn)足,若AB的中點(diǎn)為M,則的最大值為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若與直線(xiàn)垂直,那么__________14.若兩條直線(xiàn)與互相垂直,則a的值為_(kāi)_____.15.在單位正方體中,點(diǎn)E為AD的中點(diǎn),過(guò)點(diǎn)B,E,的平面截該正方體所得的截面面積為_(kāi)_____.16.已知函數(shù)有兩個(gè)極值點(diǎn),則實(shí)數(shù)a的取值范圍為_(kāi)_______.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知橢圓與拋物線(xiàn)有一個(gè)相同的焦點(diǎn),且該橢圓的離心率為,(Ⅰ)求該橢圓的標(biāo)準(zhǔn)方程:(Ⅱ)求過(guò)點(diǎn)的直線(xiàn)與該橢圓交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),若,求的面積.18.(12分)已知函數(shù)(1)求函數(shù)的圖象在點(diǎn)處的切線(xiàn)方程;(2)求函數(shù)的極值19.(12分)年月日,中國(guó)選手楊倩在東京奧運(yùn)會(huì)女子米氣步槍決賽由本得冠軍,為中國(guó)代表團(tuán)攬入本屆奧運(yùn)會(huì)第一枚金牌.受奧運(yùn)精神的鼓舞,某射擊俱樂(lè)部組織名射擊愛(ài)好者進(jìn)行一系列的測(cè)試,并記錄他們的射擊得分(單位:分),將所得數(shù)據(jù)整理得到如圖所示的頻率分布直方圖.(1)求頻率分布直方圖中的值,并估計(jì)該名射擊愛(ài)好者的射擊平均得分(求平均值時(shí)同一組數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);(2)若采用分層抽樣的方法,從得分高于分的射擊愛(ài)好者中隨機(jī)抽取人調(diào)查射擊技能情況,再?gòu)倪@人中隨機(jī)選取人進(jìn)行射擊訓(xùn)練,求這人中至少有人的分?jǐn)?shù)高于分的概率.20.(12分)如圖,在正四棱柱中,,,點(diǎn)在棱上,且平面(1)求的值;(2)若,求二面角的余弦值21.(12分)如圖,C是以為直徑的圓上異于的點(diǎn),平面平面分別是的中點(diǎn).(1)證明:平面;(2)若直線(xiàn)與平面所成角的正切值為2,求銳二面角的余弦值.22.(10分)已知橢圓的離心率為,點(diǎn)在橢圓上,直線(xiàn)與交于,兩點(diǎn)(1)求橢圓的方程及焦點(diǎn)坐標(biāo);(2)若線(xiàn)段的垂直平分線(xiàn)經(jīng)過(guò)點(diǎn),求的取值范圍
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】根據(jù)歸納推理是由特殊到一般,推導(dǎo)結(jié)論可得結(jié)果.【詳解】對(duì)于A,由,求出,,,…,推斷:數(shù)列的前項(xiàng)和,是由特殊推導(dǎo)出一般性的結(jié)論,且,故A正確;B和C屬于演繹推理,故不正確;對(duì)于D,屬于歸納推理,但時(shí),結(jié)論不正確,故D不正確.故選:A.2、A【解析】把拋擲兩枚硬幣的情況均列舉出來(lái),利用古典概型的計(jì)算公式,把,,算出來(lái),判斷四個(gè)選項(xiàng)的正誤.【詳解】?jī)擅队矌?,記為與,則拋擲兩枚硬幣,一共會(huì)出現(xiàn)的情況有四種,A正B正,A正B反,A反B正,A反B反,則,,,所以A錯(cuò)誤,BCD正確故選:A3、A【解析】利用空間向量的線(xiàn)性運(yùn)算即可求解.【詳解】..故選:A.4、C【解析】利用橢圓和雙曲線(xiàn)的性質(zhì),用橢圓雙曲線(xiàn)的焦距長(zhǎng)軸長(zhǎng)表示,再利用均值不等式得到答案【詳解】設(shè)橢圓長(zhǎng)軸,雙曲線(xiàn)實(shí)軸,由題意可知:,又,,兩式相減,可得:,,.,,當(dāng)且僅當(dāng)時(shí)取等號(hào),的最小值為6,故選:C【點(diǎn)睛】本題考查了橢圓雙曲線(xiàn)的性質(zhì),用橢圓雙曲線(xiàn)的焦距長(zhǎng)軸長(zhǎng)表示是解題的關(guān)鍵,意在考查學(xué)生的計(jì)算能力5、D【解析】根據(jù)對(duì)立事件的定義選擇【詳解】對(duì)立事件是指事件A和事件B必有一件發(fā)生,連續(xù)拋擲一枚均勻硬幣3次,“至少2次出現(xiàn)正面”即有2次或3次出現(xiàn)正面,對(duì)立事件為“有2次或3次出現(xiàn)反面”故選:D6、A【解析】A:根據(jù)方差和標(biāo)準(zhǔn)差的定義進(jìn)行判斷;B:根據(jù)中位數(shù)的定義判斷;C:根據(jù)回歸直線(xiàn)必過(guò)樣本中心點(diǎn)進(jìn)行判斷;D:根據(jù)“且”命題真假關(guān)系進(jìn)行判斷.【詳解】對(duì)于A,方差和標(biāo)準(zhǔn)差都是刻畫(huà)樣本數(shù)據(jù)分散程度的統(tǒng)計(jì)量,故A正確;對(duì)于B,若為數(shù)據(jù),2,3,,的中位數(shù),需先將數(shù)據(jù)從小到大排列,此時(shí)數(shù)據(jù)里面之間的數(shù)順序可能發(fā)生變化,則為排序后的第1010個(gè)數(shù)據(jù)的值,這個(gè)數(shù)不一定是原來(lái)的,故B錯(cuò)誤;對(duì)于C,回歸直線(xiàn)一定經(jīng)過(guò)樣本點(diǎn)的中心,,故C錯(cuò)誤;對(duì)于D,若“”為假命題,則、中至少有一個(gè)是假命題,故D錯(cuò)誤;故選:A7、C【解析】函數(shù)有兩個(gè)零點(diǎn)等價(jià)于方程有兩個(gè)根,等價(jià)于與圖象有兩個(gè)交點(diǎn),通過(guò)導(dǎo)數(shù)分析的單調(diào)性,根據(jù)圖象即可求出求出的范圍.【詳解】函數(shù)有兩個(gè)零點(diǎn),方程有兩個(gè)根,,分離參數(shù)得,與圖象有兩個(gè)交點(diǎn),令,,令,解得當(dāng)時(shí),,在單調(diào)遞增,當(dāng)時(shí),,在單調(diào)遞減,且在處取得極大值及最大值,可以畫(huà)出函數(shù)的大致圖象如下:觀察圖象可以得出.故選:C.【點(diǎn)睛】本題主要考查函數(shù)零點(diǎn)的應(yīng)用,構(gòu)造函數(shù)求函數(shù)的導(dǎo)數(shù),利用函數(shù)極值和導(dǎo)數(shù)之間的關(guān)系是解決本題的關(guān)鍵.8、D【解析】①由題意連接交于,連接,則是中位線(xiàn),證出,由線(xiàn)面平行的判定定理知∥平面;②由底面,得,再由證出平面,即得,再由是正方形證出平面,則有,再由條件證出平面;③根據(jù)邊長(zhǎng)證明△DEO是等邊三角形即可;④根據(jù)等體積法即可求.【詳解】①如圖所示,連接交于點(diǎn),連接底面是正方形,點(diǎn)是的中點(diǎn)在中,是中位線(xiàn),而平面且平面,∥平面;故①正確;②如圖所示,底面,且平面,,,是等腰直角三角形,又是斜邊的中線(xiàn),(*),由底面,得,底面是正方形,,又,平面,又平面,(**),由(*)和(**)知平面,而平面,又,且,平面;故②正確;③如圖所示,連接AC交BD與O,連接OE,由OE是三角形PAC中位線(xiàn)知OE∥PA,故∠DEO為異面直線(xiàn)PA和DE所成角或其補(bǔ)角,由②可知DE=,OD=,OE=,∴△DEO是等邊三角形,∴∠DEO=60°,故③正確;④如圖所示,設(shè)B到平面PAC的距離為d,由題可知PA=AC=PC=,故,由.故④正確.故正確的有:①②③④,正確的個(gè)數(shù)為4.故選:D.9、C【解析】根據(jù),,可以得到,從而得到與的關(guān)系式,再由,,的關(guān)系,進(jìn)而可求雙曲線(xiàn)的漸近線(xiàn)方程【詳解】解:由,,則是圓的切線(xiàn),,,,所以,因?yàn)殡p曲線(xiàn)的漸近線(xiàn)方程為,即為故選:C10、D【解析】由題可知A,B為半圓C與拋物線(xiàn)的交點(diǎn),利用韋達(dá)定理及拋物線(xiàn)的定義即求.【詳解】由曲線(xiàn),可得,即,為圓心為,半徑為7半圓,又直線(xiàn)為拋物線(xiàn)的準(zhǔn)線(xiàn),點(diǎn)為拋物線(xiàn)的焦點(diǎn),依題意可知A,B為半圓C與拋物線(xiàn)的交點(diǎn),由,得,設(shè),則,,∴.故選:D.11、D【解析】根據(jù)拋物線(xiàn)的焦點(diǎn)坐標(biāo)為可知,拋物線(xiàn)即的焦點(diǎn)坐標(biāo)為,故選D.考點(diǎn):拋物線(xiàn)的標(biāo)準(zhǔn)方程及其幾何性質(zhì).12、A【解析】設(shè),,則、,由點(diǎn)在圓上可得,再由向量垂直的坐標(biāo)表示可得,進(jìn)而可得M的軌跡為圓,即可求的最大值.【詳解】設(shè),中點(diǎn),則,,又,,則,所以,又,則,而,,所以,即,綜上,,整理得,即為M的軌跡方程,所以在圓心為,半徑為的圓上,則.故選:A.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:由點(diǎn)圓位置、中點(diǎn)坐標(biāo)公式及向量垂直的坐標(biāo)表示得到關(guān)于的軌跡方程.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由兩條直線(xiàn)垂直知,得14、4【解析】?jī)芍本€(xiàn)斜率均存在時(shí),兩直線(xiàn)垂直,斜率相乘等于-1,據(jù)此即可求解.【詳解】由題可知,.故答案為:4.15、【解析】根據(jù)題意,取的中點(diǎn),連接、、、,分析可得四邊形為平行四邊形,則要求的截面就是四邊形,進(jìn)而可得為菱形,連接、,求出、的長(zhǎng),計(jì)算可得答案【詳解】根據(jù)題意,取的中點(diǎn),連接、、、,易得,,則四邊形為平行四邊形,過(guò)點(diǎn),,的截面就是,又由正方體為單位正方體,則,則為菱形,連接、,易得,,則,即要求截面的面積為,故答案為:16、【解析】由題可得有兩個(gè)不同正根,利用分離參數(shù)法得到.令,,只需和有兩個(gè)交點(diǎn),利用導(dǎo)數(shù)研究的單調(diào)性與極值,數(shù)形結(jié)合即得.【詳解】∵的定義域?yàn)椋?,要使函?shù)有兩個(gè)極值點(diǎn),只需有兩個(gè)不同正根,并且在的兩側(cè)的單調(diào)性相反,在的兩側(cè)的單調(diào)性相反,由得,,令,,要使函數(shù)有兩個(gè)極值點(diǎn),只需和有兩個(gè)交點(diǎn),∵,令得:0<x<1;令得:x>1;所以在上單調(diào)遞增,在上單調(diào)遞減,當(dāng)時(shí),;當(dāng)時(shí),;作出和的圖像如圖,所以,即,即實(shí)數(shù)a的取值范圍為.故答案為:三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(Ⅰ);(Ⅱ)【解析】(Ⅰ)根據(jù)題意可以求出橢圓的焦點(diǎn),再根據(jù)橢圓的離心率公式,求出的值,然后結(jié)合橢圓的關(guān)系求出,最后寫(xiě)出橢圓的標(biāo)準(zhǔn)方程;(Ⅱ)根據(jù)平面向量共線(xiàn)定理可以得出A,B兩點(diǎn)橫坐標(biāo)和縱坐標(biāo)之間的關(guān)系,再設(shè)出直線(xiàn)AB方程與橢圓方程聯(lián)立,利用根與系數(shù)關(guān)系求出直線(xiàn)AB的斜率,最后根據(jù)三角形面積結(jié)合根與系數(shù)關(guān)系求出的面積.【詳解】(Ⅰ)由題意,設(shè)橢圓的標(biāo)準(zhǔn)方程為,由題意可得,又,,所以橢圓的標(biāo)準(zhǔn)方程為(Ⅱ)設(shè),,由得:,驗(yàn)證易知直線(xiàn)AB的斜率存在,設(shè)直線(xiàn)AB的方程為聯(lián)立橢圓方程,得:,整理得:,得:,將代入得,所以的面積.【點(diǎn)睛】本題考查了求橢圓的標(biāo)準(zhǔn)方程,考查了利用一元二次方程根與系數(shù)關(guān)系求直線(xiàn)斜率和三角形面積問(wèn)題,考查了數(shù)學(xué)運(yùn)算能力.18、(1)(2)極大值為12,極小值-15【解析】(1)利用導(dǎo)數(shù)的幾何意義求解即可.(2)利用導(dǎo)數(shù)求解極值即可.【小問(wèn)1詳解】,,切點(diǎn)為,故切線(xiàn)方程為,即;【小問(wèn)2詳解】令,得或列表:-12+0-0+單調(diào)遞增12單調(diào)遞減-15單調(diào)遞增函數(shù)的極大值為,函數(shù)的極小值為.19、(1),平均分為;(2).【解析】(1)利用頻率直方圖中所有矩形面積之和為可求得的值,將每個(gè)矩形底邊的中點(diǎn)值乘以對(duì)應(yīng)矩形的面積,將所得結(jié)果全部相加可得平均成績(jī);(2)分析可知所抽取的人中,成績(jī)?cè)趦?nèi)的有人,分別記為、、、,成績(jī)?cè)趦?nèi)的有人,分別記為、,列舉出所有的基本事件,并確定所求事件所包含的基本事件,利用古典概型的概率公式可求得所求事件的概率.【小問(wèn)1詳解】解:根據(jù)頻率分布直方圖得到,解得.這組樣本數(shù)據(jù)平均數(shù)為.【小問(wèn)2詳解】解:根據(jù)頻率分布直方圖得到,分?jǐn)?shù)在、內(nèi)的頻率分別為、,所以采用分層抽樣的方法從樣本中抽取的人,成績(jī)?cè)趦?nèi)的有人,分別記為、、、,成績(jī)?cè)趦?nèi)的有人,分別記為、,記“人中至少有人的分?jǐn)?shù)高于分”為事件.則所有的基本事件有、、、、、、、、、、、、、、,共種.事件包含的基本事件有、、、、、、、、,共種,所以.20、(1)答案見(jiàn)解析;(2).【解析】如圖,以點(diǎn)為原點(diǎn),,,的方向分別為,,軸的正方向,建立空間直角坐標(biāo)系,(1)設(shè),由平面,可得,從而數(shù)量積為零,可求出的值,進(jìn)而可求得的值;(2)利用空間向量求二面角的余弦值【詳解】解:(1)如圖,以點(diǎn)為原點(diǎn),,,的方向分別為,,軸的正方向,建立空間直角坐標(biāo)系,設(shè),則點(diǎn),,,則,因?yàn)槠矫妫?,所以,解得或?dāng)時(shí),,,;當(dāng)時(shí),,,(2)因?yàn)?,由?)知,平面的一個(gè)法向量為設(shè)平面的法向量為,因?yàn)?,,所以令,則所以,由圖知,二面角的平面角為銳角,所以二面角的余弦值為21、(1)證明見(jiàn)解析(2)【解析】(1)由分別是的中點(diǎn),得到,在由是圓的直徑,所以,結(jié)合面面垂直的性質(zhì)定理,證得面,即可證得面;(2)以C為坐標(biāo)原點(diǎn),為x軸,為y軸,過(guò)C垂直于面直線(xiàn)為z軸,建立空間直角坐標(biāo)系,分別求得平面與平面的一個(gè)法向量,結(jié)合向量的夾角公式
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 中國(guó)科學(xué)技術(shù)大學(xué)《食品與生物工程技術(shù)裝備》2023-2024學(xué)年第一學(xué)期期末試卷
- 浙江郵電職業(yè)技術(shù)學(xué)院《機(jī)械設(shè)備管理》2023-2024學(xué)年第一學(xué)期期末試卷
- 長(zhǎng)沙民政職業(yè)技術(shù)學(xué)院《醫(yī)學(xué)影像技術(shù)Ⅱ》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024年簡(jiǎn)化版預(yù)付貨款銷(xiāo)售協(xié)議樣本版B版
- 《贛州市營(yíng)銷(xiāo)方案新》課件
- 銷(xiāo)售業(yè)績(jī)分析總結(jié)
- 專(zhuān)業(yè)化電維修服務(wù)協(xié)議范本2024版版A版
- 湛江幼兒師范專(zhuān)科學(xué)?!短摂M儀器原理及應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025殘疾人無(wú)障礙出行服務(wù)及用工支持協(xié)議3篇
- 2024年石斛花卉深加工產(chǎn)品采購(gòu)合同3篇
- 2025年中國(guó)社會(huì)科學(xué)院外國(guó)文學(xué)研究所專(zhuān)業(yè)技術(shù)人員招聘3人歷年高頻重點(diǎn)提升(共500題)附帶答案詳解
- 《高血壓治療新進(jìn)展》課件
- 2024ESC心房顫動(dòng)管理指南解讀-第一部分
- 人力資源外包投標(biāo)方案
- 上海交通大學(xué)留學(xué)生本科入學(xué)考試 英語(yǔ)
- 【校本教材】《身邊的化學(xué)》高中化學(xué)校本課程
- 常住人口項(xiàng)目變更更正呈批表
- 產(chǎn)后訪(fǎng)視技術(shù)規(guī)范
- 《質(zhì)量管理體系文件》試模打樣通知單 (2)
- 在線(xiàn)學(xué)習(xí)平臺(tái)使用管理辦法
- 第二章藥物設(shè)計(jì)原理和方法
評(píng)論
0/150
提交評(píng)論