版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
云南省普洱市墨江縣二中2025屆高二上數(shù)學(xué)期末復(fù)習(xí)檢測試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知橢圓C1:+y2=1(m>1)與雙曲線C2:–y2=1(n>0)的焦點重合,e1,e2分別為C1,C2的離心率,則A.m>n且e1e2>1 B.m>n且e1e2<1C.m<n且e1e2>1 D.m<n且e1e2<12.圓與圓的交點為A,B,則線段AB的垂直平分線的方程是A. B.C. D.3.若方程表示雙曲線,則的取值范圍是()A.或 B.C.或 D.4.以軸為對稱軸,拋物線通徑的長為8,頂點在坐標(biāo)原點的拋物線的方程是()A. B.C.或 D.或5.設(shè)是兩個不同的平面,是一條直線,以下命題正確的是A.若,則 B.若,則C.若,則 D.若,則6.已知圓與圓,則兩圓的位置關(guān)系是()A.外切 B.內(nèi)切C.相交 D.相離7.已知為等差數(shù)列,為其前n項和,,則下列和與公差無關(guān)的是()A. B.C. D.8.已知,若,是第二象限角,則=()A. B.5C. D.109.已知函數(shù)對于任意的滿足,其中是函數(shù)的導(dǎo)函數(shù),則下列各式正確的是()A. B.C. D.10.“”是“方程是圓的方程”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件11.等比數(shù)列的各項均為正數(shù),且,則()A.5 B.10C.4 D.12.若動點滿足方程,則動點P的軌跡方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖是某賽季CBA廣東東莞銀行隊甲、乙兩名籃球運動員每場比賽得分的莖葉圖,則甲、乙比賽得分的中位數(shù)之和是______.14.如圖,SD是球O的直徑,A、B、C是球O表面上的三個不同的點,,當(dāng)三棱錐的底面是邊長為3的正三角形時,則球O的半徑為______.15.若關(guān)于的不等式恒成立,則實數(shù)的取值范圍是______.16.已知函數(shù),則的值為______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中中,平面ABCD,底面ABCD是邊長為2的正方形,.(1)求證:平面;(2)求二面角的平面角的余弦值.18.(12分)已知數(shù)列是遞增的等比數(shù)列,是其前n項和,,(1)求數(shù)列的通項公式;(2)設(shè),求數(shù)列的前n項和19.(12分)如圖,在直三棱柱中,,是中點.(1)求點到平面的的距離;(2)求平面與平面夾角的余弦值;20.(12分)已知函數(shù)的圖象在點處的切線與直線平行(是自然對數(shù)的底數(shù)).(1)求的值;(2)若在上恒成立,求實數(shù)的取值范圍.21.(12分)已知雙曲線()的一個焦點是,離心率.(1)求雙曲線的方程;(2)若斜率為的直線與雙曲線交于兩個不同的點,線段的垂直平分線與兩坐標(biāo)軸圍成的三角形的面積為,求直線的方程22.(10分)已知數(shù)列中,,且(1)求證:數(shù)列是等差數(shù)列,并求出;(2)數(shù)列前項和為,求
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】詳解】試題分析:由題意知,即,由于m>1,n>0,可得m>n,又=,故.故選A【考點】橢圓的簡單幾何性質(zhì),雙曲線的簡單幾何性質(zhì)【易錯點睛】計算橢圓的焦點時,要注意;計算雙曲線的焦點時,要注意.否則很容易出現(xiàn)錯誤2、A【解析】圓的圓心為,圓的圓心為,兩圓的相交弦的垂直平分線即為直線,其方程為,即;故選A.【點睛】本題考查圓的一般方程、兩圓的相交弦問題;處理直線和圓、圓和圓的位置關(guān)系時,往往結(jié)合平面幾何知識(如本題中,求兩圓的相交弦的垂直平分線的方程即為經(jīng)過兩圓的圓心的直線方程)可減小運算量.3、A【解析】由和的分母異號可得【詳解】由題意,解得或故選:A4、C【解析】由分焦點在軸的正半軸上和焦點在軸的負(fù)半軸上,兩種情況討論設(shè)出方程,根據(jù),即可求解.【詳解】由題意,拋物線的頂點在原點,以軸為對稱軸,且通經(jīng)長為8,當(dāng)拋物線的焦點在軸的正半軸上時,設(shè)拋物線的方程為,可得,解得,所以拋物線方程為;當(dāng)拋物線的焦點在軸的負(fù)半軸上時,設(shè)拋物線的方程為,可得,解得,所以拋物線方程為,所以所求拋物線的方程為.故選:C.5、C【解析】對于A、B、D均可能出現(xiàn),而對于C是正確的6、A【解析】求得兩圓的圓心和半徑,再根據(jù)圓心距與半徑之和半徑之差的關(guān)系,即可判斷位置關(guān)系.【詳解】對圓,其圓心,半徑;對圓,其圓心,半徑;又,故兩圓外切.故選:A.7、C【解析】依題意根據(jù)等差數(shù)列的通項公式可得,再根據(jù)等差數(shù)列前項和公式計算可得;【詳解】解:因為,所以,即,所以,,,,故選:C8、D【解析】先由誘導(dǎo)公式及同角函數(shù)關(guān)系得到,再根據(jù)誘導(dǎo)公式化簡,最后由二倍角公式化簡求值即可.【詳解】∵,∴,∵是第二象限角,∴,∴故選:D9、C【解析】令,結(jié)合題意可得,利用導(dǎo)數(shù)討論函數(shù)的單調(diào)性,進(jìn)而得出,變形即可得出結(jié)果.【詳解】令,則,又,所以,令,令,所以函數(shù)在上單調(diào)遞減,在單調(diào)遞增,所以,即,則.故選:C10、A【解析】利用充分條件和必要條件的定義判斷.【詳解】若方程表示圓,則,即,解得或,故“”是“方程是圓的方程”的充分不必要條件,故選:A11、A【解析】利用等比數(shù)列的性質(zhì)及對數(shù)的運算性質(zhì)求解.【詳解】由題有,則=5.故選:A12、A【解析】根據(jù)方程可以利用幾何意義得到動點P的軌跡方程是以與為焦點的橢圓方程,從而求出軌跡方程.【詳解】由題意得:到與的距離之和為8,且8>4,故動點P的軌跡方程是以與為焦點的橢圓方程,故,,所以,,所以橢圓方程為.故選:A二、填空題:本題共4小題,每小題5分,共20分。13、58【解析】分別將甲、乙兩名運動員的得分按小到大或者大到小排序,分別確定中位數(shù),再相加即可【詳解】因為甲、乙兩名籃球運動員各參賽11場,故中位數(shù)是第6個數(shù)甲的得分按小到大排序后為:12,22,23,32,33,34,35,40,43,44,46,所以,中位數(shù)為34乙的得分按小到大排序后為:12,13,21,22,23,24,31,31,34,40,49所以,中位數(shù)為24所以,中位數(shù)之和為34+24=58,故答案為:5814、【解析】由三棱錐是正三棱錐,利用正弦定理得出三角形外接圓的半徑,進(jìn)而求出,再由余弦定理得出球O的半徑.【詳解】因為,所以平面,三棱錐是正三棱錐,設(shè)為三角形外接圓的圓心,則在上,連接,,由得出,所以,在中,,即,解得,則球O的半徑為.故答案為:15、【解析】設(shè)由題可知,當(dāng)時,可得適合題意,當(dāng)時,可求函數(shù)的最小值即得,當(dāng)時不合題意,即得.【詳解】設(shè),由題可知,∴,當(dāng)時,,適合題意,所以,當(dāng)時,令,則,此時時,,單調(diào)遞減,,,單調(diào)遞增,∴,又,∴,∴,即,解得,當(dāng)時,時,,,故的值有正有負(fù),不合題意;綜上,實數(shù)的取值范圍是.故答案為:.【點睛】關(guān)鍵點點睛:本題考查不等式恒成立求參數(shù)的取值范圍,設(shè)由題可知,當(dāng)時,利用導(dǎo)數(shù)可求函數(shù)的最小值,結(jié)合,可得,進(jìn)而通過解,即得.16、【解析】先求出的導(dǎo)函數(shù),然后將代入可得答案.【詳解】,所以故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】(1)根據(jù)平面得到,結(jié)合得到證明。(2)建立空間直角坐標(biāo)系,計算各點坐標(biāo),計算平面的法向量,根據(jù)向量的夾角公式得到答案?!拘?詳解】由于平面,平面,所以,由于,又,所以平面【小問2詳解】兩兩垂直,建立如圖所示空間直角坐標(biāo)系,,,,,,設(shè)平面的一個法向量為設(shè)平面的一個法向量為,由,得,故可取所以所以二面角的平面角的余弦值18、(1);(2).【解析】(1)根據(jù)給定條件求出數(shù)列的公比即可計算得解.(2)由(1)的結(jié)論求出,然后利用分組求和方法求解作答.【小問1詳解】設(shè)等比數(shù)列的公比為q,而,且是遞增數(shù)列,則,,解得,所以數(shù)列的通項公式是:.【小問2詳解】由(1)知,,,,所以數(shù)列的前n項和.19、(1)(2)【解析】(1)以為原點,為軸,為軸,為軸建立空間直角坐標(biāo)系,求出平面的法向量為,再利用公式計算即可;(2)易得平面的法向量為,設(shè)平面與平面的夾角為,再利用計算即可小問1詳解】解:(1)以為原點,為軸,為軸,為軸建立空間直角坐標(biāo)系所以因為,設(shè)平面的法向量為,則有,得,令則,所以可以取,設(shè)點到平面的距離為,則,所以點到平面的的距離的距離為;【小問2詳解】(2)因為平面,取平面的法向量為設(shè)平面與平面的夾角為,所以平面與平面夾角的余弦值20、(1)(2)【解析】(1)求出函數(shù)的導(dǎo)函數(shù),根據(jù)題意結(jié)合導(dǎo)數(shù)的幾何意義列出方程,解之即可得解;(2)在上恒成立,即在上恒成立,從而,令,利用導(dǎo)數(shù)求出函數(shù)的最小值,即可求得實數(shù)的取值范圍【小問1詳解】解:,因為函數(shù)的圖象在點處的切線與直線平行,所以,解得;【小問2詳解】解:在上恒成立,即在上恒成立,,,令,則,當(dāng)時,;當(dāng)時,,函數(shù)在上單調(diào)遞減,有上單調(diào)遞增,,,即實數(shù)的取值范圍是21、(1)(2)【解析】(1)由已知及離心率公式直接計算;(2)設(shè)直線方程為,聯(lián)立方程組可得中點及中垂線方程,根據(jù)三角形面積可得的值.【小問1詳解】解:由已知得,,所
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版金融行業(yè)員工風(fēng)險控制協(xié)議3篇
- 二零二五年度LED燈帶LED顯示屏制作合同3篇
- 二零二五年度2025年度現(xiàn)代農(nóng)業(yè)科技用工協(xié)議版
- 2025年酒店總經(jīng)理工作績效評價與激勵協(xié)議
- 二零二五年度餐飲業(yè)食品安全監(jiān)督檢驗合同
- 2025年度鮮花店與花藝設(shè)計大賽贊助合同
- 2025年度企事業(yè)單位食堂承包及員工福利合同
- 2025年度門窗定制安裝與智能家居系統(tǒng)集成合同
- 2025年度綠色建筑貸款抵押合同
- 二零二五年度深水井鉆井項目環(huán)境保護(hù)合同
- (二統(tǒng))大理州2025屆高中畢業(yè)生第二次復(fù)習(xí)統(tǒng)一檢測 物理試卷(含答案)
- 口腔執(zhí)業(yè)醫(yī)師定期考核試題(資料)帶答案
- 2024人教版高中英語語境記單詞【語境記單詞】新人教版 選擇性必修第2冊
- 能源管理總結(jié)報告
- 充電樁巡查記錄表
- 阻燃材料的阻燃機理建模
- CJT 511-2017 鑄鐵檢查井蓋
- 配電工作組配電網(wǎng)集中型饋線自動化技術(shù)規(guī)范編制說明
- 2024高考物理全國乙卷押題含解析
- 介入科圍手術(shù)期護(hù)理
- 青光眼術(shù)后護(hù)理課件
評論
0/150
提交評論