版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
山東省煙臺市芝罘區(qū)煙臺二中2025屆高二數(shù)學第一學期期末經典試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知數(shù)列滿足:,數(shù)列的前n項和為,若恒成立,則的取值范圍是()A. B.C. D.2.在正四面體中,棱長為2,且E是棱AB中點,則的值為A. B.1C. D.3.已知橢圓,則它的短軸長為()A.2 B.4C.6 D.84.如圖,一個圓錐形的空杯子上面放著一個半徑為4.5cm的半球形的冰淇淋,若冰淇淋融化后正好盛滿杯子,則杯子的高()A.9cm B.6cmC.3cm D.4.5cm5.礦山爆破時,在爆破點處炸開的礦石的運動軌跡可看作是不同的拋物線,根據(jù)地質、炸藥等因素可以算出這些拋物線的范圍,這個范圍的邊界可以看作一條拋物線,叫“安全拋物線”,如圖所示.已知某次礦山爆破時的安全拋物線的焦點為,則這次爆破時,礦石落點的最遠處到點的距離為()A. B.2C. D.6.若某群體中的成員只用現(xiàn)金支付的概率為,既用現(xiàn)金支付也用非現(xiàn)金支付的概率為,則不用現(xiàn)金支付的概率為()A. B.C. D.7.設是周期為2的奇函數(shù),當時,,則()A. B.C. D.8.《周髀算經》是中國最古老的天文學和數(shù)學著作,書中提到:冬至、小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種這十二個節(jié)氣的日影子長依次成等差數(shù)列.若冬至、大寒、雨水的日影子長的和是尺,芒種的日影子長為尺,則冬至的日影子長為()A.尺 B.尺C.尺 D.尺9.七巧板是中國古代勞動人民發(fā)明的一種傳統(tǒng)智力玩具,它由五塊等腰直角三角形、一塊正方形和一塊平行四邊形共七塊板組成如圖是一個用七巧板拼成的正方形,若在此正方形中任取一點,則此點取自陰影部分的概率為()A. B.C. D.10.在空間直角坐標系中,點關于軸的對稱點為點,則點到直線的距離為()A. B.C. D.611.若函數(shù)的導函數(shù)為偶函數(shù),則的解析式可能是()A. B.C. D.12.直線的傾斜角,則其斜率的取值范圍為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若圓和圓的公共弦所在的直線方程為,則______14.2021年7月,某市發(fā)生德爾塔新冠肺炎疫情,市衛(wèi)健委決定在全市設置多個核酸檢測點對全市人員進行核酸檢測.已知組建一個小型核酸檢測點需要男醫(yī)生1名,女醫(yī)生3名,每小時可做200人次的核酸檢測,組建一個大型核酸檢測點需要男醫(yī)生3名,女醫(yī)生3名.每小時可做300人次的核酸檢測.某三甲醫(yī)院決定派出男醫(yī)生10名、女醫(yī)生18名去做核酸檢測工作,則這28名醫(yī)生需要組建________個小型核酸檢測點和________個大型核酸檢測點,才能更高效的完成本次核酸檢測工作.15.已知函數(shù)在R上連續(xù)且可導,為偶函數(shù)且,其導函數(shù)滿足,則不等式的解集為___.16.命題,恒成立是假命題,則實數(shù)a取值范圍是________________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知命題p:,命題q:.(1)若命題p為真命題,求實數(shù)x的取值范圍.(2)若p是q的充分條件,求實數(shù)m的取值范圍;18.(12分)在所有棱長均為2的三棱柱ABC-A1B1C1中,∠B1BC=60°,求證:(1)AB1⊥BC;(2)A1C⊥平面AB1C1.19.(12分)已知圓:,,為圓上的動點,若線段的垂直平分線交于點.(1)求動點的軌跡的方程;(2)已知為上一點,過作斜率互為相反數(shù)且不為0的兩條直線,分別交曲線于,,求的取值范圍.20.(12分)△ABC的三個頂點分別為(1)求△ABC的外接圓M的方程;(2)設直線與圓M交于兩點,求|PQ|的值21.(12分)已知圓,直線(1)證明直線與圓C一定有兩個交點;(2)求直線與圓相交的最短弦長,并求對應弦長最短時的直線方程22.(10分)奮發(fā)學習小組共有3名學生,在某次探究活動中,他們每人上交了1份作業(yè),現(xiàn)各自從這3份作業(yè)中隨機地取出了一份作業(yè).(1)每個學生恰好取到自己作業(yè)的概率是多少?(2)每個學生不都取到自己作業(yè)的概率是多少?(3)每個學生取到的都不是自己作業(yè)的概率是多少?
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】由于,所以利用裂項相消求和法可求得,然后由可得恒成立,再利用基本不等式求出的最小值即可【詳解】,故,故恒成立等價于,即恒成立,化簡得到,因為,當且僅當,即時取等號,所以故選:D2、A【解析】根據(jù)題意,由正四面體的性質可得:,可得,由E是棱中點,可得,代入,利用數(shù)量積運算性質即可得出.【詳解】如圖所示由正四面體的性質可得:可得:是棱中點故選:【點睛】本題考查空間向量的線性運算,考查立體幾何中的垂直關系,考查轉化與化歸思想,屬于中等題型.3、B【解析】根據(jù)橢圓短軸長的定義進行求解即可.【詳解】由橢圓的標準方程可知:,所以該橢圓的短軸長為,故選:B4、A【解析】根據(jù)圓錐和球的體積公式以及半球的體積等于圓錐的體積,即可列式解出【詳解】由題意可得,,解得.故選:A5、D【解析】根據(jù)給定條件求出拋物線的頂點,結合拋物線的性質求出p值即可計算作答.【詳解】依題意,拋物線的頂點坐標為,則拋物線的頂點到焦點的距離為,p>0,解得,于是得拋物線的方程為,由得,,即拋物線與軸的交點坐標為,因此,,所以礦石落點的最遠處到點的距離為.故選:D6、A【解析】利用對立事件概率公式可求得所求事件的概率.【詳解】由對立事件的概率公式可知,該群體中的成員不用現(xiàn)金支付的概率為.故選:A.7、A【解析】由周期函數(shù)得,再由奇函數(shù)的性質通過得結論【詳解】∵函數(shù)是周期為2的周期函數(shù),∴,而,又函數(shù)為奇函數(shù),∴.故選A【點睛】本題考查函數(shù)的周期性與奇偶性,屬于基礎題.此類題型,求函數(shù)值時,一般先用周期性化自變量到已知區(qū)間關于原點對稱的區(qū)間,然后再由奇函數(shù)性質求得函數(shù)值8、D【解析】根據(jù)題意轉化為等差數(shù)列,求首項.【詳解】設冬至的日影長為,雨水的日影長為,根據(jù)等差數(shù)列的性質可知,芒種的日影長為,,解得:,,所以冬至的日影長為尺.故選:D9、D【解析】設正方形的邊長為,計算出陰影部分區(qū)域的面積和正方形區(qū)域的面積,然后利用幾何概型的概率公式計算出所求事件的概率.【詳解】設大正方形的邊長為,則面積為,陰影部分由一個大等腰直角三角形和一個梯形組成大等腰直角三角形的面積為,梯形的上底為,下底為,高為,面積為,故所求概率故選:D.10、C【解析】按照空間中點到直線的距離公式直接求解.【詳解】由題意,,,的方向向量,,則點到直線的距離為.故選:C.11、C【解析】根據(jù)題意,求出每個函數(shù)的導函數(shù),進而判斷答案.【詳解】對A,,為奇函數(shù);對B,,為奇函數(shù);對C,,為偶函數(shù);對D,,既不是奇函數(shù)也不是偶函數(shù).故選:C.12、B【解析】根據(jù)傾斜角和斜率的關系,確定正確選項.【詳解】直線的傾斜角為,則斜率為,在上為增函數(shù).由于直線的傾斜角,所以其斜率的取值范圍為,即.故選:B【點睛】本小題主要考查傾斜角和斜率的關系,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由兩圓公共弦方程,將兩圓方程相減得到,結合已知列方程組求、,即可得答案.【詳解】由題設,兩圓方程相減可得:,即為公共弦,∴,可得,∴.故答案為:.14、①.4②.2【解析】根據(jù)題意建立不等式組,進而作出可行域,最后通過數(shù)形結合求得答案.【詳解】設需要組建個小型核酸檢測點和個大型核酸檢測點,則每小時做核酸檢測的最高人次,作出可行域如圖中陰影部分所示,由圖可見當直線過點A時,z取得最大值,由得恰為整數(shù)點,所以組建4個小型核酸檢測點和2個大型核酸檢測點,才能更高效的完成本次核酸檢測工作.故答案為:4;2.15、【解析】由已知條件可得圖象關于對稱,在上遞增,在上遞減,然后分四種情況討論求解即可【詳解】因為為偶函數(shù),所以的圖象關于軸對稱,所以的圖象關于對稱,因為,所以當時,,當時,,所以在上遞增,在上遞減,由,得,或,或,或,解得,或,或,或,綜上,,所以等式的解集為故答案為:16、【解析】由命題為假命題可得命題為真命題,由此可求a范圍.【詳解】∵命題,恒成立是假命題,∴,,∴,,又函數(shù)在為減函數(shù),∴,∴,∴實數(shù)a的取值范圍是,故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)由一元二次不等式的解法求得的范圍;(2)由p是q的充分條件,轉化為集合的包含關系,從而可求實數(shù)m的取值范圍.【詳解】(1)由p:為真,解得.(2)q:,若p是q的充分條件,則是的子集所以.即.18、(1)證明見解析;(2)證明見解析.【解析】(1)通過計算·=0來證得AB1⊥BC.(2)通過證明A1C⊥AC1、A1C⊥AC1來證得A1C⊥平面AB1C1.【詳解】證明:(1)易知<>=120°,=+,則·=(+)·=·+·=2×2×+2×2×=0.所以AB1⊥BC.(2)易知四邊形AA1C1C為菱形,所以A1C⊥AC1.因為·=(-)·(-)=(-)·(--)=·-·-·-·+·+·=·-·-·+·=2×2×-4-2×2×+4=0,所以AB1⊥A1C,又AC1∩AB1=A,所以A1C⊥平面AB1C1.19、(1)動點的軌跡的方程為;(2)的取值范圍.【解析】(1)由條件線段的垂直平分線交于點可得,由此可得,根據(jù)橢圓的定義可得點的軌跡為橢圓,結合橢圓的標準方程求動點的軌跡的方程;(2)由(1)可求點坐標,設直線的方程為,,聯(lián)立方程組化簡可得,,由直線,的斜率互為相反數(shù)可得的值,再由弦長公式求的長,再求其范圍.【小問1詳解】由題知故.即即在以為焦點且長軸為4的橢圓上則動點的軌跡的方程為:;【小問2詳解】故即.設:,聯(lián)立(*),,∴,,又則:即若,則過,不符合題意故,∴,故20、(1);(2).【解析】(1)設出圓的一般方程,根據(jù)的坐標滿足圓方程,待定系數(shù),即可求得圓方程;(2)根據(jù)(1)中所求圓方程,結合弦長公式,即可求得結果.【小問1詳解】設圓M的方程為,因為都在圓上,則,解得,故圓M的方程為,也即.【小問2詳解】由(1)可知,圓M的圓心坐標為,半徑為,點M到直線的距離故.21、(1)證明見解析(2)答案見解析【解析】(1)由,變形為求解直線過的定點,即可得解;(2)法一:由圓心和連線與直線垂直求解;法二:由圓心到直線距離最大時求解.【小問1詳解】解:,所以,令,所以直線經過定點,圓可變形為,因為,所以定點在圓內,所以直線和圓C相交,有兩個交點;【小問2詳解】法一:圓心為,到距離為,圓心與連線的斜率為,最短弦與圓心和的連線垂直,所以,所以最短弦長為,直線的方程為法二:圓心到直線距離:,,要求d的最大值,則,當且僅當時,d的最大值為,所以最短弦長為,直線的方程為.22、(1)(2)(3)【解析】(1)根據(jù)列舉法列出所有的可能基
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度棉紗行業(yè)質量標準制定與實施合同4篇
- 2025版年會現(xiàn)場攝影攝像服務合同范本4篇
- 二零二五年度棉花病蟲害防治與防治藥物供應合同4篇
- 二零二五年度新能源汽車動力電池研發(fā)合作合同
- 2025年度農家樂景區(qū)旅游咨詢與導覽服務合同協(xié)議
- 二零二五年度美容院美容設備維護保養(yǎng)及備件供應合同4篇
- 二零二五年度美甲店互聯(lián)網營銷與電商平臺合作合同4篇
- 二零二五年度南寧市體育場館設施租賃合同及賽事組織協(xié)議3篇
- 2025年度個人二手車居間銷售合同示范文本2篇
- 二零二五年帳篷租賃及活動策劃服務合同3篇
- 完整版秸稈炭化成型綜合利用項目可行性研究報告
- 油氣行業(yè)人才需求預測-洞察分析
- 《數(shù)據(jù)采集技術》課件-Scrapy 框架的基本操作
- (2024)河南省公務員考試《行測》真題及答案解析
- 圍城讀書分享課件
- 2025年河北省單招語文模擬測試二(原卷版)
- 工作計劃 2025年度醫(yī)院工作計劃
- 高一化學《活潑的金屬單質-鈉》分層練習含答案解析
- DB34∕T 4010-2021 水利工程外觀質量評定規(guī)程
- 2024年內蒙古中考英語試卷五套合卷附答案
- 2024年電工(高級)證考試題庫及答案
評論
0/150
提交評論