




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆陜西省西安市蓮湖區(qū)七十中數(shù)學(xué)高二上期末統(tǒng)考試題注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.函數(shù)極小值為()A. B.C. D.2.過(guò)拋物線的焦點(diǎn)引斜率為1的直線,交拋物線于,兩點(diǎn),則()A.4 B.6C.8 D.103.設(shè)數(shù)列的前項(xiàng)和為,數(shù)列是公比為2的等比數(shù)列,且,則()A.255 B.257C.127 D.1294.連續(xù)拋擲一枚均勻硬幣3次,事件“至少2次出現(xiàn)正面”的對(duì)立事件是()A.只有2次出現(xiàn)反面 B.至少2次出現(xiàn)正面C.有2次或3次出現(xiàn)正面 D.有2次或3次出現(xiàn)反面5.圓與圓的位置關(guān)系為()A.內(nèi)切 B.外切C.相交 D.相離6.某次射擊比賽中,某選手射擊一次擊中10環(huán)的概率是,連續(xù)兩次均擊中10環(huán)的概率是,已知某次擊中10環(huán),則隨后一次擊中10環(huán)的概率是A. B.C. D.7.函數(shù),則的值為()A. B.C. D.8.函數(shù)的最小值是()A.3 B.4C.5 D.69.已知,為橢圓上關(guān)于短軸對(duì)稱的兩點(diǎn),、分別為橢圓的上、下頂點(diǎn),設(shè),、分別為直線,的斜率,則的最小值為()A. B.C. D.10.傾斜角為45°,在y軸上的截距為-1的直線方程是()A.x-y+1=0 B.x-y-1=0C.x+y-1=0 D.x+y+1=011.瑞士數(shù)學(xué)家歐拉(LeonhardEuler)1765年在其所著的《三角形的幾何學(xué)》一書中提出:任意三角形的外心、重心、垂心在同一條直線上.后人稱這條直線為歐拉線.已知△ABC的頂點(diǎn),其歐拉線方程為,則頂點(diǎn)C的坐標(biāo)是()A.() B.()C.() D.()12.執(zhí)行如圖所示的程序框圖,輸出的結(jié)果為()A.4 B.9C.23 D.64二、填空題:本題共4小題,每小題5分,共20分。13.在學(xué)習(xí)《曲線與方程》的課堂上,老師給出兩個(gè)曲線方程;,老師問(wèn)同學(xué)們:你想到了什么?能得到哪些結(jié)論?下面是四位同學(xué)的回答:甲:曲線關(guān)于對(duì)稱;乙:曲線關(guān)于原點(diǎn)對(duì)稱;丙:曲線與坐標(biāo)軸在第一象限圍成的圖形面積;?。呵€與坐標(biāo)軸在第一象限圍成的圖形面積;四位同學(xué)回答正確的有______(選填“甲、乙、丙、丁”)14.已知為橢圓上的一點(diǎn),,分別為圓和圓上的點(diǎn),則的最小值為______15.長(zhǎng)方體中,,,已知點(diǎn)H,A,三點(diǎn)共線,且,則點(diǎn)H到平面ABCD的距離為______16.甲口袋中裝有2個(gè)黑球和1個(gè)白球,乙口袋中裝有3個(gè)白球.現(xiàn)同時(shí)從甲、乙兩口袋中各任取一個(gè)球交換放入對(duì)方口袋,共進(jìn)行了2次這樣的操作后,甲口袋中恰有2個(gè)黑球的概率為__________________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)設(shè):實(shí)數(shù)滿足,:實(shí)數(shù)滿足.(1)若,且為真,求實(shí)數(shù)的取值范圍;(2)若是的充分不必要條件,求實(shí)數(shù)的取值范圍.18.(12分)已知向量,(1)求;(2)求;(3)若(),求的值19.(12分)橢圓:()的離心率為,遞增直線過(guò)橢圓的左焦點(diǎn),且與橢圓交于兩點(diǎn),若,求直線的斜率.20.(12分)如圖,中,且,將沿中位線EF折起,使得,連結(jié)AB,AC,M為AC的中點(diǎn).(1)證明:平面ABC;(2)求二面角的余弦值.21.(12分)已知橢圓的離心率為,且經(jīng)過(guò)點(diǎn).(1)求橢圓的方程;(2)經(jīng)過(guò)點(diǎn)的直線與橢圓交于不同的兩點(diǎn),,為坐標(biāo)原點(diǎn),若的面積為,求直線的方程.22.(10分)在直三棱柱中,,,,,分別是,上的點(diǎn),且(1)求證:∥平面;(2)求平面與平面所成銳二面角的余弦值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】利用導(dǎo)數(shù)分析函數(shù)的單調(diào)性,可求得該函數(shù)的極小值.【詳解】對(duì)函數(shù)求導(dǎo)得,令,可得或,列表如下:減極小值增極大值減所以,函數(shù)的極小值為.故選:A.2、C【解析】由題意可得,的方程為,設(shè)、,聯(lián)立直線與拋物線方程可求,利用拋物線的定義計(jì)算即可求解.【詳解】由上可得:焦點(diǎn),直線的方程為,設(shè),,由,可得,則有,由拋物線的定義可得:,故選:C.3、C【解析】由題設(shè)可得,再由即可求值.【詳解】由數(shù)列是公比為2的等比數(shù)列,且,∴,即,∴.故選:C.4、D【解析】根據(jù)對(duì)立事件的定義選擇【詳解】對(duì)立事件是指事件A和事件B必有一件發(fā)生,連續(xù)拋擲一枚均勻硬幣3次,“至少2次出現(xiàn)正面”即有2次或3次出現(xiàn)正面,對(duì)立事件為“有2次或3次出現(xiàn)反面”故選:D5、B【解析】求出兩圓的圓心距與半徑之和、半徑之差比較大小即可得出正確答案.【詳解】由可得圓心為,半徑,由可得圓心為,半徑,所以圓心距為,所以兩圓相外切,故選:B.6、B【解析】根據(jù)條件概率的計(jì)算公式,得所求概率為,故選B.7、B【解析】求出函數(shù)的導(dǎo)數(shù),代入求值即可.【詳解】函數(shù),故,所以,故選:B8、D【解析】先判斷函數(shù)的單調(diào)性,再利用其單調(diào)性求最小值【詳解】由,得,因?yàn)?,所以,所以在上單調(diào)遞增,所以,故選:D9、A【解析】設(shè)出點(diǎn),的坐標(biāo),并表示出兩個(gè)斜率、,把代數(shù)式轉(zhuǎn)化成與點(diǎn)的坐標(biāo)相關(guān)的代數(shù)式,再與橢圓有公共點(diǎn)解決即可.【詳解】橢圓中:,設(shè)則,則,,令,則它對(duì)應(yīng)直線由整理得由判別式解得即,則的最小值為故選:A10、B【解析】由題意,,所以,即,故選B11、A【解析】根據(jù)題意,求得的外心,再根據(jù)外心的性質(zhì),以及重心的坐標(biāo),聯(lián)立方程組,即可求得結(jié)果.【詳解】因?yàn)?,故的斜率,又的中點(diǎn)坐標(biāo)為,故的垂直平分線的方程為,即,故△的外心坐標(biāo)即為與的交點(diǎn),即,不妨設(shè)點(diǎn),則,即;又△的重心的坐標(biāo)為,其滿足,即,也即,將其代入,可得,,解得或,對(duì)應(yīng)或,即或,因?yàn)榕c點(diǎn)重合,故舍去.故點(diǎn)的坐標(biāo)為.故選:A.12、C【解析】直接按程序框圖運(yùn)行即可求出結(jié)果.【詳解】初始化數(shù)值,,第一次執(zhí)行循環(huán)體,,,1≥4不成立;第二次執(zhí)行循環(huán)體,,,2≥4不成立;第三次執(zhí)行循環(huán)體,,,3≥4不成立;第四次執(zhí)行循環(huán)體,,,4≥4成立;輸出故選:C二、填空題:本題共4小題,每小題5分,共20分。13、甲、乙、丙、丁【解析】結(jié)合對(duì)稱性判斷甲、乙的正確性;通過(guò)對(duì)比和與坐標(biāo)軸在第一象限圍成的圖形面積來(lái)判斷丙丁的正確性.【詳解】對(duì)于甲:交換方程中和的位置得,所以曲線關(guān)于對(duì)稱,甲回答正確.對(duì)于乙:和兩個(gè)點(diǎn)都滿足方程,所以曲線關(guān)于原點(diǎn)對(duì)稱,乙回答正確.對(duì)于丙:直線與坐標(biāo)軸在第一象限圍成的圖形面積為,,,在第一象限,直線與曲線都滿足,,,所以在第一象限,直線的圖象在曲線的圖象上方,所以,丙回答正確.對(duì)于?。簣A與坐標(biāo)軸在第一象限圍成的圖形面積為,在第一象限,曲線與曲線都滿足,,,,所以在第一象限,曲線的圖象在曲線的圖象下方,所以,丁回答正確.故答案為:甲、乙、丙、丁14、8【解析】根據(jù)橢圓的定義、點(diǎn)到圓上距離的最小值,即可得到答案;【詳解】設(shè)為橢圓的左右焦點(diǎn),則,等號(hào)成立,當(dāng)共線,共線,的最小值為,故答案為:15、【解析】在長(zhǎng)方體中,以點(diǎn)A為原點(diǎn)建立空間直角坐標(biāo)系,利用已知條件求出點(diǎn)H的坐標(biāo)作答.【詳解】在長(zhǎng)方體中,以點(diǎn)A為原點(diǎn)建立如圖所示的空間直角坐標(biāo)系,則,,因點(diǎn)H,A,三點(diǎn)共線,令,點(diǎn),則,又,則,解得,所以點(diǎn)到平面ABCD的距離為.故答案為:16、【解析】分兩類:兩次都互相交換白球的概率和第一次甲交出黑球收到白球,且第二次甲交出白球收到黑球的概率求和可得答案.【詳解】分兩類:①兩次都互相交換白球的概率為;②第一次甲交出黑球收到白球,且第二次甲交出白球收到黑球的概率為.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)【解析】(1)首先分別求出、為真時(shí)參數(shù)的取值范圍,再由為真,取并集即可;(2)首先解一元二次不等式,依題意是的必要不充分條件,則可推出,而不能推出,即可得到不等式組,解得即可;【小問(wèn)1詳解】解:當(dāng)時(shí),,即,解得,即為真時(shí),實(shí)數(shù)的取值范圍為實(shí)數(shù)滿足,即,解得:,即為真時(shí),實(shí)數(shù)的取值范圍為因,所以,即;【小問(wèn)2詳解】解:由,即,所以,因?yàn)槭堑某浞植槐匾獥l件,所以是的必要不充分條件,則可推出,而不能推出,則,解得;18、(1)(2)(3)【解析】(1)根據(jù)向量數(shù)量積的坐標(biāo)表示即可得解;(2)求出,再根據(jù)空間向量的模的坐標(biāo)表示即可得解;(3)由,可得,再根據(jù)數(shù)量積的運(yùn)算律即可得解.【小問(wèn)1詳解】解:;【小問(wèn)2詳解】解:;【小問(wèn)3詳解】解:因?yàn)?,所以,即,解?19、1【解析】根據(jù)離心率寫出,設(shè)出直線為,把直線的方程與橢圓進(jìn)行聯(lián)立消,寫出韋達(dá)定理,再利用,即可解出,進(jìn)而求出直線的斜率.【詳解】,.設(shè)遞增直線的方程為,把直線的方程與橢圓進(jìn)行聯(lián)立:.①,②.③.把③代入①中得④.把④代入②中得...20、(1)證明見解析(2)【解析】(1)由勾股定理以及等腰三角形的性質(zhì)得出,,再由線面垂直的判定證明即可;(2)以點(diǎn)為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系,由向量法得出面面角.【小問(wèn)1詳解】設(shè),則,,平面平面,連接,,,,,即又,平面ABC【小問(wèn)2詳解】,以點(diǎn)為坐標(biāo)原點(diǎn),建立如下圖所示的空間直角坐標(biāo)系設(shè)平面的法向量為,平面的法向量為,令,則同理可得,又二面角為鈍角,故二面角的余弦值為.21、(1);(2)或.【解析】(1)由離心率公式、將點(diǎn)代入橢圓方程得出橢圓的方程;(2)聯(lián)立橢圓和直線的方程,由判別式得出的范圍,再由韋達(dá)定理結(jié)合三角形面積公式得出,求出的值得出直線的方程.【詳解】解:(1)因?yàn)闄E圓的離心率為,所以.①又因?yàn)闄E圓經(jīng)過(guò)點(diǎn),所以有.②聯(lián)立①②可得,,,所以橢圓的方程為.(2)由題意可知,直線的斜率存在,設(shè)直線的方程為.由消去整理得,.因?yàn)橹本€與橢圓交于不同兩點(diǎn),所以,即,所以設(shè),,則,.由題意得,面積,即.因?yàn)榈拿娣e為,所以,即.化簡(jiǎn)得,,即,解得或,均滿足,所以或.所以直線的方程為或.【點(diǎn)睛】關(guān)鍵點(diǎn)睛:在第二問(wèn)中,關(guān)鍵是由韋達(dá)定理建立的關(guān)系,結(jié)合三角形面
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 游泳救生員初級(jí)測(cè)試題與答案
- 推拿治療學(xué)測(cè)試題+答案
- 業(yè)務(wù)學(xué)習(xí)心得體會(huì)范文
- 醫(yī)美服裝采購(gòu)合同范本
- 下半年人力資源部工作計(jì)劃
- 三年級(jí)數(shù)學(xué)綜合實(shí)踐課教案
- 中藥炮制工中級(jí)練習(xí)題(含答案)
- 辦公別墅 出租合同范本
- 建筑信息模型職業(yè)技能理論知識(shí)試題庫(kù)及參考答案
- 工程地質(zhì)與土力學(xué)練習(xí)題(含答案)
- 湖北省武漢市江漢區(qū)2023-2024學(xué)年七年級(jí)下學(xué)期期末數(shù)學(xué)試題
- (完整版)初級(jí)茶藝師理論知識(shí)300題含答案【完整版】
- 四肢創(chuàng)傷影像(X線)診斷
- DL-T5153-2014火力發(fā)電廠廠用電設(shè)計(jì)技術(shù)規(guī)程
- (高清版)JTGT 3365-02-2020 公路涵洞設(shè)計(jì)規(guī)范
- DZ∕T 0223-2011 礦山地質(zhì)環(huán)境保護(hù)與恢復(fù)治理方案編制規(guī)范(正式版)
- 2024年湖南有色金屬職業(yè)技術(shù)學(xué)院?jiǎn)握新殬I(yè)適應(yīng)性測(cè)試題庫(kù)學(xué)生專用
- 醫(yī)院營(yíng)養(yǎng)食堂餐飲服務(wù)投標(biāo)方案(技術(shù)方案)
- 醫(yī)院培訓(xùn)課件:《分級(jí)護(hù)理制度解讀》
- 學(xué)生宿舍安全應(yīng)急疏散預(yù)案
- 北師大版數(shù)學(xué)四年級(jí)下冊(cè)第2單元 認(rèn)識(shí)三角形和四邊形 大單元整體教學(xué)設(shè)計(jì)
評(píng)論
0/150
提交評(píng)論