版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2025屆甘肅省永昌縣第四中學(xué)高三數(shù)學(xué)第一學(xué)期期末統(tǒng)考試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.將函數(shù)的圖象向右平移個周期后,所得圖象關(guān)于軸對稱,則的最小正值是()A. B. C. D.2.函數(shù)f(x)=sin(wx+)(w>0,<)的最小正周期是π,若將該函數(shù)的圖象向右平移個單位后得到的函數(shù)圖象關(guān)于直線x=對稱,則函數(shù)f(x)的解析式為()A.f(x)=sin(2x+) B.f(x)=sin(2x-)C.f(x)=sin(2x+) D.f(x)=sin(2x-)3.若復(fù)數(shù)是純虛數(shù),則實數(shù)的值為()A.或 B. C. D.或4.在平行六面體中,M為與的交點,若,,則與相等的向量是()A. B. C. D.5.已知數(shù)列是公比為的正項等比數(shù)列,若、滿足,則的最小值為()A. B. C. D.6.在正方體中,E是棱的中點,F(xiàn)是側(cè)面內(nèi)的動點,且與平面的垂線垂直,如圖所示,下列說法不正確的是()A.點F的軌跡是一條線段 B.與BE是異面直線C.與不可能平行 D.三棱錐的體積為定值7.一個由兩個圓柱組合而成的密閉容器內(nèi)裝有部分液體,小圓柱底面半徑為,大圓柱底面半徑為,如圖1放置容器時,液面以上空余部分的高為,如圖2放置容器時,液面以上空余部分的高為,則()A. B. C. D.8.在展開式中的常數(shù)項為A.1 B.2 C.3 D.79.將函數(shù)的圖像向右平移個單位長度,再將圖像上各點的橫坐標(biāo)伸長到原來的6倍(縱坐標(biāo)不變),得到函數(shù)的圖像,若為奇函數(shù),則的最小值為()A. B. C. D.10.我國數(shù)學(xué)家陳景潤在哥德巴赫猜想的研究中取得了世界領(lǐng)先的成果,哥德巴赫猜想的內(nèi)容是:每個大于2的偶數(shù)都可以表示為兩個素數(shù)的和,例如:,,,那么在不超過18的素數(shù)中隨機選取兩個不同的數(shù),其和等于16的概率為()A. B. C. D.11.函數(shù)在內(nèi)有且只有一個零點,則a的值為()A.3 B.-3 C.2 D.-212.設(shè)是定義在實數(shù)集上的函數(shù),滿足條件是偶函數(shù),且當(dāng)時,,則,,的大小關(guān)系是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若且時,不等式恒成立,則實數(shù)a的取值范圍為________.14.設(shè)數(shù)列的前n項和為,且,若,則______________.15.如圖,某地一天從時的溫度變化曲線近似滿足函數(shù),則這段曲線的函數(shù)解析式為______________.16.已知、為正實數(shù),直線截圓所得的弦長為,則的最小值為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知集合,集合.(1)求集合;(2)若,求實數(shù)的取值范圍.18.(12分)已知,,函數(shù)的最小值為.(1)求證:;(2)若恒成立,求實數(shù)的最大值.19.(12分)在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),將曲線上每一點的橫坐標(biāo)變?yōu)樵瓉淼谋?,縱坐標(biāo)不變,得到曲線,以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,射線與曲線交于點,將射線繞極點逆時針方向旋轉(zhuǎn)交曲線于點.(1)求曲線的參數(shù)方程;(2)求面積的最大值.20.(12分)已知函數(shù).(1)求函數(shù)的單調(diào)區(qū)間;(2)若,證明.21.(12分)已知均為正實數(shù),函數(shù)的最小值為.證明:(1);(2).22.(10分)如圖,在矩形中,,,點是邊上一點,且,點是的中點,將沿著折起,使點運動到點處,且滿足.(1)證明:平面;(2)求二面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
由函數(shù)的圖象平移變換公式求出變換后的函數(shù)解析式,再利用誘導(dǎo)公式得到關(guān)于的方程,對賦值即可求解.【詳解】由題意知,函數(shù)的最小正周期為,即,由函數(shù)的圖象平移變換公式可得,將函數(shù)的圖象向右平移個周期后的解析式為,因為函數(shù)的圖象關(guān)于軸對稱,所以,即,所以當(dāng)時,有最小正值為.故選:D【點睛】本題考查函數(shù)的圖象平移變換公式和三角函數(shù)誘導(dǎo)公式及正余弦函數(shù)的性質(zhì);熟練掌握誘導(dǎo)公式和正余弦函數(shù)的性質(zhì)是求解本題的關(guān)鍵;屬于中檔題、??碱}型.2、D【解析】
由函數(shù)的周期求得,再由平移后的函數(shù)圖像關(guān)于直線對稱,得到,由此求得滿足條件的的值,即可求得答案.【詳解】分析:由函數(shù)的周期求得,再由平移后的函數(shù)圖像關(guān)于直線對稱,得到,由此求得滿足條件的的值,即可求得答案.詳解:因為函數(shù)的最小正周期是,所以,解得,所以,將該函數(shù)的圖像向右平移個單位后,得到圖像所對應(yīng)的函數(shù)解析式為,由此函數(shù)圖像關(guān)于直線對稱,得:,即,取,得,滿足,所以函數(shù)的解析式為,故選D.【點睛】本題主要考查了三角函數(shù)的圖象變換,以及函數(shù)的解析式的求解,其中解答中根據(jù)三角函數(shù)的圖象變換得到,再根據(jù)三角函數(shù)的性質(zhì)求解是解答的關(guān)鍵,著重考查了推理與運算能力.3、C【解析】試題分析:因為復(fù)數(shù)是純虛數(shù),所以且,因此注意不要忽視虛部不為零這一隱含條件.考點:純虛數(shù)4、D【解析】
根據(jù)空間向量的線性運算,用作基底表示即可得解.【詳解】根據(jù)空間向量的線性運算可知因為,,則即,故選:D.【點睛】本題考查了空間向量的線性運算,用基底表示向量,屬于基礎(chǔ)題.5、B【解析】
利用等比數(shù)列的通項公式和指數(shù)冪的運算法則、指數(shù)函數(shù)的單調(diào)性求得再根據(jù)此范圍求的最小值.【詳解】數(shù)列是公比為的正項等比數(shù)列,、滿足,由等比數(shù)列的通項公式得,即,,可得,且、都是正整數(shù),求的最小值即求在,且、都是正整數(shù)范圍下求最小值和的最小值,討論、取值.當(dāng)且時,的最小值為.故選:B.【點睛】本題考查等比數(shù)列的通項公式和指數(shù)冪的運算法則、指數(shù)函數(shù)性質(zhì)等基礎(chǔ)知識,考查數(shù)學(xué)運算求解能力和分類討論思想,是中等題.6、C【解析】
分別根據(jù)線面平行的性質(zhì)定理以及異面直線的定義,體積公式分別進行判斷.【詳解】對于,設(shè)平面與直線交于點,連接、,則為的中點分別取、的中點、,連接、、,,平面,平面,平面.同理可得平面,、是平面內(nèi)的相交直線平面平面,由此結(jié)合平面,可得直線平面,即點是線段上上的動點.正確.對于,平面平面,和平面相交,與是異面直線,正確.對于,由知,平面平面,與不可能平行,錯誤.對于,因為,則到平面的距離是定值,三棱錐的體積為定值,所以正確;故選:.【點睛】本題考查了正方形的性質(zhì)、空間位置關(guān)系、空間角、簡易邏輯的判定方法,考查了推理能力與計算能力,屬于中檔題.7、B【解析】
根據(jù)空余部分體積相等列出等式即可求解.【詳解】在圖1中,液面以上空余部分的體積為;在圖2中,液面以上空余部分的體積為.因為,所以.故選:B【點睛】本題考查圓柱的體積,屬于基礎(chǔ)題.8、D【解析】
求出展開項中的常數(shù)項及含的項,問題得解?!驹斀狻空归_項中的常數(shù)項及含的項分別為:,,所以展開式中的常數(shù)項為:.故選:D【點睛】本題主要考查了二項式定理中展開式的通項公式及轉(zhuǎn)化思想,考查計算能力,屬于基礎(chǔ)題。9、C【解析】
根據(jù)三角函數(shù)的變換規(guī)則表示出,根據(jù)是奇函數(shù),可得的取值,再求其最小值.【詳解】解:由題意知,將函數(shù)的圖像向右平移個單位長度,得,再將圖像上各點的橫坐標(biāo)伸長到原來的6倍(縱坐標(biāo)不變),得到函數(shù)的圖像,,因為是奇函數(shù),所以,解得,因為,所以的最小值為.故選:【點睛】本題考查三角函數(shù)的變換以及三角函數(shù)的性質(zhì),屬于基礎(chǔ)題.10、B【解析】
先求出從不超過18的素數(shù)中隨機選取兩個不同的數(shù)的所有可能結(jié)果,然后再求出其和等于16的結(jié)果,根據(jù)等可能事件的概率公式可求.【詳解】解:不超過18的素數(shù)有2,3,5,7,11,13,17共7個,從中隨機選取兩個不同的數(shù)共有,其和等于16的結(jié)果,共2種等可能的結(jié)果,故概率.故選:B.【點睛】古典概型要求能夠列舉出所有事件和發(fā)生事件的個數(shù),本題不可以列舉出所有事件但可以用分步計數(shù)得到,屬于基礎(chǔ)題.11、A【解析】
求出,對分類討論,求出單調(diào)區(qū)間和極值點,結(jié)合三次函數(shù)的圖像特征,即可求解.【詳解】,若,,在單調(diào)遞增,且,在不存在零點;若,,在內(nèi)有且只有一個零點,.故選:A.【點睛】本題考查函數(shù)的零點、導(dǎo)數(shù)的應(yīng)用,考查分類討論思想,熟練掌握函數(shù)圖像和性質(zhì)是解題的關(guān)鍵,屬于中檔題.12、C【解析】∵y=f(x+1)是偶函數(shù),∴f(-x+1)=f(x+1),即函數(shù)f(x)關(guān)于x=1對稱.
∵當(dāng)x≥1時,為減函數(shù),∵f(log32)=f(2-log32)=f()且==log34,log34<<3,∴b>a>c,
故選C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
將不等式兩邊同時平方進行變形,然后得到對應(yīng)不等式組,對的取值進行分類,將問題轉(zhuǎn)化為二次函數(shù)在區(qū)間上恒正、恒負(fù)時求參數(shù)范圍,列出對應(yīng)不等式組,即可求解出的取值范圍.【詳解】因為,所以,所以,所以,所以或,當(dāng)時,對且不成立,當(dāng)時,取,顯然不滿足,所以,所以,解得;當(dāng)時,取,顯然不滿足,所以,所以,解得,綜上可得的取值范圍是:.故答案為:.【點睛】本題考查根據(jù)不等式恒成立求解參數(shù)范圍,難度較難.根據(jù)不等式恒成立求解參數(shù)范圍的兩種常用方法:(1)分類討論法:分析參數(shù)的臨界值,對參數(shù)分類討論;(2)參變分離法:將參數(shù)單獨分離出來,再以函數(shù)的最值與參數(shù)的大小關(guān)系求解出參數(shù)范圍.14、9【解析】
用換中的n,得,作差可得,從而數(shù)列是等比數(shù)列,再由即可得到答案.【詳解】由,得,兩式相減,得,即;又,解得,所以數(shù)列為首項為-3、公比為3的等比數(shù)列,所以.故答案為:9.【點睛】本題考查已知與的關(guān)系求數(shù)列通項的問題,要注意n的范圍,考查學(xué)生運算求解能力,是一道中檔題.15、,【解析】
根據(jù)圖象得出該函數(shù)的最大值和最小值,可得,,結(jié)合圖象求得該函數(shù)的最小正周期,可得出,再將點代入函數(shù)解析式,求出的值,即可求得該函數(shù)的解析式.【詳解】由圖象可知,,,,,從題圖中可以看出,從時是函數(shù)的半個周期,則,.又,,得,取,所以,.故答案為:,.【點睛】本題考查由圖象求函數(shù)解析式,考查計算能力,屬于中等題.16、【解析】
先根據(jù)弦長,半徑,弦心距之間的關(guān)系列式求得,代入整理得,利用基本不等式求得最值.【詳解】解:圓的圓心為,則到直線的距離為,由直線截圓所得的弦長為可得,整理得,解得或(舍去),令,又,當(dāng)且僅當(dāng)時,等號成立,則.故答案為:.【點睛】本題考查直線和圓的位置關(guān)系,考核基本不等式求最值,關(guān)鍵是對目標(biāo)式進行變形,變成能用基本不等式求最值的形式,也可用換元法進行變形,是中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】
(1)求出函數(shù)的定義域,即可求出結(jié)論;(2)化簡集合,根據(jù)確定集合的端點位置,建立的不等量關(guān)系,即可求解.【詳解】(1)由,即得或,所以集合或.(2)集合,由得或,解得或,所以實數(shù)的取值范圍為.【點睛】本題考查集合的運算,集合間的關(guān)系求參數(shù),考查函數(shù)的定義域,屬于基礎(chǔ)題.18、(1)見解析;(2)最大值為.【解析】
(1)將函數(shù)表示為分段函數(shù),利用函數(shù)的單調(diào)性求出該函數(shù)的最小值,進而可證得結(jié)論成立;(2)由可得出,并將代數(shù)式與相乘,展開后利用基本不等式可求得的最小值,進而可得出實數(shù)的最大值.【詳解】(1).當(dāng)時,函數(shù)單調(diào)遞減,則;當(dāng)時,函數(shù)單調(diào)遞增,則;當(dāng)時,函數(shù)單調(diào)遞增,則.綜上所述,,所以;(2)因為恒成立,且,,所以恒成立,即.因為,當(dāng)且僅當(dāng)時等號成立,所以,實數(shù)的最大值為.【點睛】本題考查含絕對值函數(shù)最值的求解,同時也考查了利用基本不等式恒成立求參數(shù),考查推理能力與計算能力,屬于中等題.19、(1)(為參數(shù));(2).【解析】
(1)根據(jù)伸縮變換結(jié)合曲線的參數(shù)方程可得出曲線的參數(shù)方程;(2)將曲線的方程化為普通方程,然后化為極坐標(biāo)方程,設(shè)點的極坐標(biāo)為,點的極坐標(biāo)為,將這兩點的極坐標(biāo)代入橢圓的極坐標(biāo)方程,得出和關(guān)于的表達式,然后利用三角恒等變換思想即可求出面積的最大值.【詳解】(1)由于曲線的參數(shù)方程為(為參數(shù)),將曲線上每一點的橫坐標(biāo)變?yōu)樵瓉淼谋?,縱坐標(biāo)不變,得到曲線,則曲線的參數(shù)方程為(為參數(shù));(2)將曲線的參數(shù)方程化為普通方程得,化為極坐標(biāo)方程得,即,設(shè)點的極坐標(biāo)為,點的極坐標(biāo)為,將這兩點的極坐標(biāo)代入橢圓的極坐標(biāo)方程得,,的面積為,當(dāng)時,的面積取到最大值.【點睛】本題考查參數(shù)方程、極坐標(biāo)方程與普通方程的互化,考查了伸縮變換,同時也考查了利用極坐標(biāo)方程求解三角形面積的最值問題,要熟悉極坐標(biāo)方程所適用的基本類型,考查分析問題和解決問題的能力,屬于中等題.20、(1)單調(diào)遞減區(qū)間為,,無單調(diào)遞增區(qū)間(2)證明見解析【解析】
(1)求導(dǎo),根據(jù)導(dǎo)數(shù)的正負(fù)判斷單調(diào)性,(2)整理,化簡為,令,求的單調(diào)性,以及,即證.【詳解】解:(1)函數(shù)定義域為,則,令,,則,當(dāng),,單調(diào)遞減;當(dāng),,單調(diào)遞增;故,,,,故函數(shù)的單調(diào)遞減區(qū)間為,,無單調(diào)遞增區(qū)間.(2)證明,即為,因為,即證,令,則,令,則,當(dāng)時,,所以在上單調(diào)遞減,則,,則在上恒成立,所以在上單調(diào)遞減,所以要證原不等式成立,只需證當(dāng)時,,令,,,可知對于恒成立,即,即,故,即證,故原不等式得證.【點睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,利用導(dǎo)數(shù)證明不等式,函數(shù)的最值問題,屬于中檔題.21、(1)證明見解析(2)證明見解析【解析】
(1)運用絕對值不等式的性質(zhì),注意等號成立的條件,即可求得最小值,再運用柯西不等式,即
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 月度工作總結(jié)與反思計劃
- 2024版簡單訂購合同范本
- 國有土地自建房購買合同(2篇)
- 華中師范大學(xué)《中學(xué)數(shù)學(xué)課程與教學(xué)論》2023-2024學(xué)年第一學(xué)期期末試卷
- 二零二五年度知識產(chǎn)權(quán)產(chǎn)學(xué)研合作協(xié)議3篇
- 二零二五年度服裝進口報關(guān)代理合同范本3篇
- 山西金融職業(yè)學(xué)院《隨機過程及其應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷
- 吉林建筑科技學(xué)院《線性代數(shù)雙語》2023-2024學(xué)年第一學(xué)期期末試卷
- 鄭州信息工程職業(yè)學(xué)院《代數(shù)學(xué)II》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024版離婚要多長時間才能夠拿到離婚證
- 推進中小學(xué)人工智能教育發(fā)展的政策和經(jīng)費支持
- 幼兒園安保培訓(xùn)記錄表2018年秋
- 浙江國輻環(huán)保科技中心放射性同位素銷售項目環(huán)境影響報告
- 保障房出租運營方案
- 高血壓急癥的急救與護理pt
- 【表格】新員工崗前培訓(xùn)記錄表
- 醫(yī)學(xué)倫理學(xué)-南方醫(yī)科大學(xué)中國大學(xué)mooc課后章節(jié)答案期末考試題庫2023年
- 醫(yī)療安全(不良)事件總結(jié)分析會議記錄
- 建筑用砂采石場安全生產(chǎn)綜合應(yīng)急預(yù)案
- 自來水廠水廠自控方案
- 2023-2024學(xué)年浙江省義烏市小學(xué)語文五年級期末自測考試題附參考答案和詳細(xì)解析
評論
0/150
提交評論