版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2025屆新疆克拉瑪依市北師大克拉瑪依附中數(shù)學(xué)高二上期末質(zhì)量檢測模擬試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.《九章算數(shù)》“竹九節(jié)”問題:現(xiàn)有一根9節(jié)的竹子,自上而下各節(jié)的容積成等差數(shù)列,上面4節(jié)的容積為3升,下面3節(jié)的容積共4升,則第五節(jié)的容積為()A.1升 B.升C.升 D.升2.已知隨機(jī)變量,,則的值為()A.0.24 B.0.26C.0.68 D.0.763.命題“?x∈[1,2],x2-a≤0”為真命題的一個充分不必要條件是()A.a≥4 B.a≤4C.a≥5 D.a≤54.命題“”的一個充要條件是()A. B.C. D.5.在正方體中,分別為的中點(diǎn),為側(cè)面的中心,則異面直線與所成角的余弦值為()A. B.C. D.6.在中,、、所對的邊分別為、、,若,,,則()A. B.C. D.7.如圖,四棱錐中,底面是邊長為的正方形,平面,為底面內(nèi)的一動點(diǎn),若,則動點(diǎn)的軌跡在()A.圓上 B.雙曲線上C.拋物線上 D.橢圓上8.“冰雹猜想”數(shù)列滿足:,,若,則()A.4 B.3C.2 D.19.已知點(diǎn),若直線與線段沒有公共點(diǎn),則的取值范圍是()A. B.C. D.10.若函數(shù)在上為單調(diào)減函數(shù),則的取值范圍()A. B.C. D.11.命題:“,”的否定形式為()A., B.,C., D.,12.已知方程表示雙曲線,則實(shí)數(shù)的取值范圍是()A.或 B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.不大于100的正整數(shù)中,被3除余1的所有數(shù)的和是___________14.已知空間向量,則向量在坐標(biāo)平面上的投影向量是__________15.正方體的棱長為2,點(diǎn)為底面正方形的中心,點(diǎn)在側(cè)面正方形的邊界及其內(nèi)部運(yùn)動,若,則點(diǎn)的軌跡的長度為______16.圓上的點(diǎn)到直線的距離的最大值為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知,,分別為三個內(nèi)角,,的對邊,.(Ⅰ)求;(Ⅱ)若=2,的面積為,求,.18.(12分)已知橢圓C的中心在原點(diǎn),焦點(diǎn)在x軸上,長軸長為4,且點(diǎn)在橢圓上(1)經(jīng)過點(diǎn)M(1,)作一直線交橢圓于AB兩點(diǎn),若點(diǎn)M為線段AB的中點(diǎn),求直線的斜率;(2)設(shè)橢圓C的上頂點(diǎn)為P,設(shè)不經(jīng)過點(diǎn)P的直線與橢圓C交于C,D兩點(diǎn),且,求證:直線過定點(diǎn)19.(12分)證明:是無理數(shù).(我們知道任意一個有理數(shù)都可以寫成形如(m,n互質(zhì),)的形式)20.(12分)如圖,在四棱錐中,已知平面ABCD,為等邊三角形,,,.(1)證明:平面PAD;(2)若M是BP的中點(diǎn),求二面角的余弦值.21.(12分)已知動點(diǎn)到點(diǎn)的距離與點(diǎn)到直線的距離相等.(1)求動點(diǎn)的軌跡方程;(2)若過點(diǎn)且斜率為的直線與動點(diǎn)的軌跡交于、兩點(diǎn),求三角形AOB的面積.22.(10分)已知曲線:.(1)若曲線是雙曲線,求的取值范圍;(2)設(shè),已知過曲線的右焦點(diǎn),傾斜角為的直線交曲線于A,B兩點(diǎn),求.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】設(shè)出竹子自上而下各節(jié)的容積且為等差數(shù)列,根據(jù)上面4節(jié)的容積共3升,下面3節(jié)的容積共4升列出關(guān)于首項和公差的方程,聯(lián)立即可求出首項和公差,根據(jù)求出的首項和公差,利用等差數(shù)列的通項公式即可求出第5節(jié)的容積【詳解】解:設(shè)竹子自上而下各節(jié)的容積分別為:,,,,且為等差數(shù)列,根據(jù)題意得:,,即①,②,②①得:,解得,把代入①得:,則故選:B【點(diǎn)睛】本題考查學(xué)生掌握等差數(shù)列的性質(zhì),靈活運(yùn)用等差數(shù)列的通項公式化簡求值,屬于中檔題2、A【解析】根據(jù)給定條件利用正態(tài)分布的對稱性計算作答.【詳解】因隨機(jī)變,,有P(ξ<4)=P(ξ≤4)=0.76,由正態(tài)分布的對稱性得:,所以的值為0.24.故選:A3、C【解析】先要找出命題為真命題的充要條件,從集合的角度充分不必要條件應(yīng)為的真子集,由選擇項不難得出答案【詳解】命題“?x∈[1,2],x2-a≤0”為真命題,可化為?x∈[1,2],恒成立即只需,即命題“?x∈[1,2],x2-a≤0”為真命題的的充要條件為,而要找的一個充分不必要條件即為集合的真子集,由選擇項可知C符合題意.故選:C4、D【解析】結(jié)合不等式的基本性質(zhì),利用充分條件和必要條件的定義判斷.【詳解】A.當(dāng)時,滿足,推不出,故不充分;B.當(dāng)時,滿足,推不出,故不充分;C.當(dāng)時,推不出,故不必要;D.因為,故充要,故選:D5、A【解析】建立空間直角坐標(biāo)系,用空間向量求解異面直線夾角的余弦值.【詳解】如圖,以D為坐標(biāo)原點(diǎn),DA所在直線為x軸,DC所在直線為y軸,所在直線為z軸建立空間直角坐標(biāo)系,設(shè)正方體棱長為2,則,,,,則,,設(shè)異面直線與所成角為(),則.故選:A6、B【解析】利用正弦定理,以及大邊對大角,結(jié)合正弦定理,即可求得.【詳解】根據(jù)題意,由正弦定理,可得:,解得,故可得或,由,可得,故故選:B.7、A【解析】根據(jù)題意,得到兩兩垂直,以點(diǎn)為坐標(biāo)原點(diǎn),分別以為軸,建立空間直角坐標(biāo)系,設(shè),由題意,得到,,再由得到,求出點(diǎn)的軌跡,即可得出結(jié)果.【詳解】由題意,兩兩垂直,以點(diǎn)為坐標(biāo)原點(diǎn),分別以為軸,建立如圖所示的空間直角坐標(biāo)系,因為底面是邊長為的正方形,則,,因為為底面內(nèi)的一動點(diǎn),所以可設(shè),因此,,因為平面,所以,因此,所以由得,即,整理得:,表示圓,因此,動點(diǎn)的軌跡在圓上.故選:A.【點(diǎn)睛】本題主要考查立體幾何中的軌跡問題,靈活運(yùn)用空間向量的方法求解即可,屬于常考題型.8、A【解析】根據(jù)題意分別假設(shè)為奇數(shù)、偶數(shù)的情況,求出對應(yīng)的即可.【詳解】由題意知,因為,若為奇數(shù)時,,與為奇數(shù)矛盾,不符合題意;若為偶數(shù)時,,可得,符合題意.不符合故選:A9、A【解析】分別求出,即可得到答案.【詳解】直線經(jīng)過定點(diǎn).因為,所以,所以要使直線與線段沒有公共點(diǎn),只需:,即.所以的取值范圍是.故選:A10、A【解析】分析可知對任意的恒成立,利用參變量分離法結(jié)合二次函數(shù)的基本性質(zhì)可求得實(shí)數(shù)的取值范圍.【詳解】因為,則,由題意可知,對任意的恒成立,則,當(dāng)時,在上單調(diào)遞減,在上單調(diào)遞減,所以,,故.故選:A.11、D【解析】根據(jù)含一個量詞的命題的否定方法直接得到結(jié)果.【詳解】因為全稱命題的否定是特稱命題,所以命題:“,”的否定形式為:,,故選:D.【點(diǎn)睛】本題考查全稱命題的否定,難度容易.含一個量詞的命題的否定方法:修改量詞,否定結(jié)論.12、A【解析】根據(jù)雙曲線標(biāo)準(zhǔn)方程的性質(zhì),列出關(guān)于不等式,求解即可得到答案【詳解】由雙曲線的性質(zhì):,解的或,故選:A二、填空題:本題共4小題,每小題5分,共20分。13、1717【解析】利用等差數(shù)列的前項和公式可求所有數(shù)的和.【詳解】100以內(nèi)的正整數(shù)中,被3除余1由小到大構(gòu)成等差數(shù)列,其首項為1,公差為3,共有項,它們的和為,故答案為:.14、【解析】根據(jù)投影向量的知識求得正確答案.【詳解】空間向量在坐標(biāo)平面上的投影向量是.故答案為:15、【解析】取中點(diǎn),利用線面垂直的判定方法可證得平面,由此可確定點(diǎn)軌跡為,再計算即可.【詳解】取中點(diǎn),連接,平面,平面,,又四邊形為正方形,,又,平面,平面,又平面,;由題意得:,,,,;平面,,平面,,在側(cè)面的邊界及其內(nèi)部運(yùn)動,點(diǎn)軌跡為線段;故答案為:.16、【解析】先求得圓心到直線的距離,結(jié)合圓上的點(diǎn)到直線的距離的最大值為,即可求解.【詳解】由題意,圓的圓心坐標(biāo)為,半徑為,則圓心到直線的距離為,所以圓上的點(diǎn)到直線的距離的最大值為.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)=2【解析】(Ⅰ)由及正弦定理得由于,所以,又,故.(Ⅱ)的面積==,故=4,而故=8,解得=218、(1);(2)證明見解析.【解析】(1)設(shè)橢圓的方程為代入點(diǎn)的坐標(biāo)求出橢圓的方程,再利用點(diǎn)差法求解;(2)由題得直線的斜率存在,設(shè)直線的方程為,聯(lián)立直線和橢圓的方程得韋達(dá)定理,根據(jù)和韋達(dá)定理得到,即得證.【小問1詳解】解:由題設(shè)橢圓的方程為因為橢圓經(jīng)過點(diǎn),所以所以橢圓的方程為.設(shè),所以,所以,由題得,所以,所以,所以,所以直線的斜率為.【小問2詳解】解:由題得當(dāng)直線的斜率不存在時,不符合題意;當(dāng)直線的斜率存在時,設(shè)直線的方程為,聯(lián)立方程組y=kx+nx24所以,解得①,設(shè),,,,則②,因為,則,,,又,,所以③,由②③可得(舍或滿足條件①,此時直線的方程為,故直線過定點(diǎn)19、詳見解析【解析】利用反證法,即可推得矛盾.【詳解】假設(shè)有理數(shù),則,則,為整數(shù),的尾數(shù)只能是0,1,4,5,6,9,的尾數(shù)只能是0,1,4,5,6,9,則的尾數(shù)是0,2,8,由得,尾數(shù)為0,則的尾數(shù)是0,而的尾數(shù)為0或5,這與為最簡分?jǐn)?shù),的最大公約數(shù)是1,相矛盾,所以假設(shè)不正確,是無理數(shù).20、(1)證明見解析(2)【解析】(1)根據(jù)條件先證明,再根據(jù)線面平行的判定定理證明平面PAD;(2)確定坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系,從而求出相關(guān)的點(diǎn)的坐標(biāo),進(jìn)而求得相關(guān)向量的坐標(biāo),再求相關(guān)平面的法向量,根據(jù)向量的夾角公式求得結(jié)果.【小問1詳解】證明:由已知為等邊三角形,且,所以又因為,,在中,,又,所以在底面中,,又平面,平面,所以平面.【小問2詳解】解:取的中點(diǎn),連接,則,由(1)知,所以,分別以,,為,,軸建立空間直角坐標(biāo)系.則,,,所以,由已知可知平面ABCD的一個法向量設(shè)平面的一個法向量為,由,即,得,令,則,所以,由圖形可得二面角為銳角,所以二面角的余弦值為.21、(1)(2)【解析】小問1:由拋物線的定義可求得動點(diǎn)的軌跡方程;小問2:可知直線的方程為,設(shè)點(diǎn)、,將直線的方程與拋物線的方程聯(lián)立,求出的值,利用拋物線的定義可求得的值,結(jié)合面積公式即可求解小問1詳解】由題意點(diǎn)的軌跡是以為焦點(diǎn),直線為準(zhǔn)線的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 中國艾滋病“問題”解析
- 局長個人述職報告
- 二零二五年度房地產(chǎn)項目土地租賃合同簽約流程與政策解讀3篇
- 2024年土地登記代理人題庫附答案解析
- 永州市2025屆高三高考第二次模擬考試(二模)語文試卷(含答案)
- 2024年公務(wù)員考試鄭州市《行政職業(yè)能力測驗》高分沖刺試題含解析
- 2025年幼兒園大班年級組工作計劃
- 2025幼兒園開學(xué)初工作計劃
- Unit 5 Lesson 28 說課稿-2024-2025學(xué)年冀教版八年級英語下冊
- 2024年公務(wù)員考試從江縣《行政職業(yè)能力測驗》預(yù)測試卷含解析
- 江蘇鹽城東臺市小學(xué)數(shù)學(xué)五年級上冊期末測試卷含答案
- CNC工藝簡介課件
- 海外安全培訓(xùn)課件
- 江蘇省蘇州市2023-2024學(xué)年高一上學(xué)期期末學(xué)業(yè)質(zhì)量陽光指標(biāo)調(diào)研語文試卷
- 大學(xué)軍事理論課教程第三章軍事思想第四節(jié)當(dāng)代中國軍事思想
- 開展學(xué)科周活動方案
- 報價單(報價單模板)
- 園林景觀給排水設(shè)計匯總計算書
- 《電線電纜常用計算公式》
- 關(guān)于心理健康教育情況的調(diào)研報告
- 內(nèi)側(cè)蒂直線短瘢痕法治療乳房肥大癥的臨床研究
評論
0/150
提交評論