版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
湖南省A佳經(jīng)典聯(lián)考試題2025屆高二數(shù)學(xué)第一學(xué)期期末預(yù)測(cè)試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在直三棱柱中,,M,N分別是,的中點(diǎn),,則AN與BM所成角的余弦值為()A. B.C. D.2.圓心在x軸上且過點(diǎn)的圓與y軸相切,則該圓的方程是()A. B.C. D.3.設(shè)圓:和圓:交于A,B兩點(diǎn),則線段AB所在直線的方程為()A. B.C. D.4.與直線關(guān)于軸對(duì)稱的直線的方程為()A. B.C. D.5.橢圓離心率是()A. B.C. D.6.在空間四邊形中,,,,且,則()A. B.C. D.7.若圓與圓有且僅有一條公切線,則()A.-23 B.-3C.-12 D.-138.直線在軸上的截距為,在軸上的截距為,則有()A., B.,C., D.,9.若雙曲線的漸近線方程為,則實(shí)數(shù)a的值為()A B.C.2 D.10.拋物線型太陽灶是利用太陽能輻射的一種裝置.當(dāng)旋轉(zhuǎn)拋物面的主光軸指向太陽的時(shí)候,平行的太陽光線入射到旋轉(zhuǎn)拋物面表面,經(jīng)過反光材料的反射,這些反射光線都從它的焦點(diǎn)處通過,形成太陽光線的高密集區(qū),拋物面的焦點(diǎn)在它的主光軸上.如圖所示的太陽灶中,灶深CD即焦點(diǎn)到灶底(拋物線的頂點(diǎn))的距離為1m,則灶口直徑AB為()A.2m B.3mC.4m D.5m11.方程與的曲線在同一坐標(biāo)系中的示意圖應(yīng)是()A. B.C. D.12.在正方體中,,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.命題“若,則”的逆否命題為______14.已知為拋物線上任意一點(diǎn),為拋物線的焦點(diǎn),為平面內(nèi)一定點(diǎn),則的最小值為__________.15.一個(gè)四面體有五條棱長(zhǎng)均為2,則該四面體的體積最大值為_______16.若拋物線經(jīng)過點(diǎn),則__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在①,②,③這三個(gè)條件中任選一個(gè)補(bǔ)充在下面問題中,并解答下列題目設(shè)首項(xiàng)為2的數(shù)列的前n項(xiàng)和為,前n項(xiàng)積為,且______(1)求數(shù)列的通項(xiàng)公式;(2)若數(shù)列的前n項(xiàng)和為,令,求數(shù)列的前n項(xiàng)和18.(12分)已知數(shù)列的前n項(xiàng)和為滿足(1)求證:是等比數(shù)列,并求數(shù)列通項(xiàng)公式;(2)若,數(shù)列的前項(xiàng)和為.求證:19.(12分)如圖,是底面邊長(zhǎng)為1的正三棱錐,分別為棱上的點(diǎn),截面底面,且棱臺(tái)與棱錐的棱長(zhǎng)和相等.(棱長(zhǎng)和是指多面體中所有棱的長(zhǎng)度之和)(1)求證:為正四面體;(2)若,求二面角的大??;(3)設(shè)棱臺(tái)的體積為,是否存在體積為且各棱長(zhǎng)均相等的直四棱柱,使得它與棱臺(tái)有相同的棱長(zhǎng)和?若存在,請(qǐng)具體構(gòu)造出這樣的一個(gè)直四棱柱,并給出證明;若不存在,請(qǐng)說明理由.20.(12分)等差數(shù)列中,首項(xiàng),且成等比數(shù)列(1)求數(shù)列的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和21.(12分)在平面直角坐標(biāo)系中,已知拋物線的焦點(diǎn)與橢圓的右焦點(diǎn)重合(1)求橢圓的離心率;(2)求拋物線的方程;(3)設(shè)是拋物線上一點(diǎn),且,求點(diǎn)的坐標(biāo)22.(10分)已知橢圓的離心率為,右焦點(diǎn)到上頂點(diǎn)的距離為.(1)求橢圓的方程;(2)斜率為2的直線經(jīng)過橢圓的左焦點(diǎn),且與橢圓相交于兩點(diǎn),求的面積.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】構(gòu)建空間直角坐標(biāo)系,根據(jù)已知條件求AN與BM對(duì)應(yīng)的方向向量,應(yīng)用空間向量夾角的坐標(biāo)表示求AN與BM所成角的余弦值.【詳解】建立如下圖所示的空間直角坐標(biāo)系,∴,,,,∴,,∴,所以AN與BM所成角的余弦值為.故選:D2、A【解析】根據(jù)題意設(shè)出圓的方程,列式即可求出【詳解】依題可設(shè)圓的方程為,所以,解得即圓的方程是故選:A3、A【解析】將兩圓的方程相減,即可求兩圓相交弦所在直線的方程.【詳解】設(shè),因?yàn)閳A:①和圓:②交于A,B兩點(diǎn)所以由①-②得:,即,故坐標(biāo)滿足方程,又過AB的直線唯一確定,即直線的方程為.故選:A4、D【解析】點(diǎn)關(guān)于x軸對(duì)稱,橫坐標(biāo)不變,縱坐標(biāo)互為相反數(shù),據(jù)此即可求解.【詳解】設(shè)(x,y)是與直線關(guān)于軸對(duì)稱的直線上任意一點(diǎn),則(x,-y)在上,故,∴與直線關(guān)于軸對(duì)稱的直線的方程為.故選:D.5、C【解析】將方程轉(zhuǎn)化為橢圓的標(biāo)準(zhǔn)方程,求得a,c,再由離心率公式求得答案.【詳解】解:由得,所以,則,所以橢圓的離心率,故選:C.6、A【解析】利用空間向量的線性運(yùn)算即可求解.【詳解】..故選:A.7、A【解析】根據(jù)兩圓有且僅有一條公切線,得到兩圓內(nèi)切,從而可求出結(jié)果.【詳解】因?yàn)閳A,圓心為,半徑為;圓可化為,圓心為,半徑,又圓與圓有且僅有一條公切線,所以兩圓內(nèi)切,因此,即,解得.故選:A.8、B【解析】將直線方程的一般形式化為截距式,由此可得其在x軸和y軸上的截距.【詳解】直線方程化成截距式為,所以,故選:B.9、D【解析】由雙曲線的漸近線方程結(jié)合已知可得.【詳解】雙曲線方程為所以漸近線為,故,解得:.故選:D10、C【解析】建立如圖所示的平面直角坐標(biāo)系,設(shè)拋物線的方程為,根據(jù)是拋物線的焦點(diǎn),求得拋物線的方程,進(jìn)而求得的長(zhǎng).【詳解】由題意,建立如圖所示的平面直角坐標(biāo)系,O與C重合,設(shè)拋物線的方程為,由題意可得是拋物線的焦點(diǎn),即,可得,所以拋物線的方程為,當(dāng)時(shí),,所以.故選:C.11、A【解析】方程即,表示拋物線,方程表示橢圓或雙曲線,當(dāng)和同號(hào)時(shí),拋物線開口向左,方程表示焦點(diǎn)在軸的橢圓,無符合條件的選項(xiàng);當(dāng)和異號(hào)時(shí),拋物線開口向右,方程表示雙曲線,本題選擇A選項(xiàng).12、A【解析】根據(jù)空間向量基本定理,結(jié)合空間向量加法的幾何意義進(jìn)行求解即可.【詳解】因?yàn)椋杂?,故選:A二、填空題:本題共4小題,每小題5分,共20分。13、若,則【解析】否定原命題條件和結(jié)論,并將條件與結(jié)論互換,即可寫出逆否命題.【詳解】由逆否命題的定義知:原命題的逆否命題為“若,則”.故答案為:若,則.14、3【解析】利用拋物線的定義,再結(jié)合圖形即求.【詳解】由題可得拋物線的準(zhǔn)線為,設(shè)點(diǎn)在準(zhǔn)線上的射影為,則根據(jù)拋物線的定義可知,∴要求取得最小值,即求取得最小,當(dāng)三點(diǎn)共線時(shí)最小,為.故答案為:3.15、1【解析】由已知中一個(gè)四面體有五條棱長(zhǎng)都等于2,易得該四面體必然有兩個(gè)面為等邊三角形,根據(jù)棱錐的幾何特征,分析出當(dāng)這兩個(gè)平面垂直時(shí),該四面體的體積最大,將相關(guān)幾何量代入棱錐體積公式,即可得到答案【詳解】一個(gè)四面體有五條棱長(zhǎng)都等于2,如下圖:設(shè)除PC外的棱均為2,設(shè)P到平面ABC距離為h,則三棱錐的體積V=,∵是定值,∴當(dāng)P到平面ABC距離h最大時(shí),三棱錐體積最大,故當(dāng)平面PAB⊥平面ABC時(shí),三棱錐體積最大,此時(shí)h為等邊三角形PAB的AB邊上的高,則h,故三棱錐體積的最大值為:故答案為:116、2【解析】將點(diǎn)代入拋物線方程即可得出答案.【詳解】解:因?yàn)閽佄锞€經(jīng)過點(diǎn),所以,即.故答案為:2.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)選擇不同的條件,再通過構(gòu)造數(shù)列以及累乘法即可求得對(duì)應(yīng)情況下的通項(xiàng)公式;(2)根據(jù)(1)中所求,求得,再利用錯(cuò)位相減法求其前項(xiàng)和即可.【小問1詳解】選①:∵,即,∴.即,∴數(shù)列是常數(shù)列,∴,故;選②:∵,∴時(shí),,則,即∴,∴;當(dāng)時(shí),也滿足,∴;選③:得,所以數(shù)列是等差數(shù)列,首項(xiàng)為2,公差為1則,∴.【小問2詳解】由(1)知當(dāng)時(shí),,∴又∵時(shí),,符合上式,∴∴∴而相減得∴.18、(1)證明見解析,(2)證明見解析【解析】(1)令可求得的值,令,由可得,兩式作差可得,利用等比數(shù)列的定義可證得結(jié)論成立,確定該數(shù)列的首項(xiàng)和公比,可求得數(shù)列的通項(xiàng)公式;(2)求得,利用錯(cuò)位相減法可求得,結(jié)合數(shù)列的單調(diào)性可證得結(jié)論成立.【小問1詳解】證明:當(dāng)時(shí),,解得,當(dāng)時(shí),由可得,上述兩個(gè)等式作差得,所以,,則,因?yàn)?,則,可得,,,以此類推,可知對(duì)任意的,,所以,,因此,數(shù)列是等比數(shù)列,且首項(xiàng)為,公比為,所以,,解得.【小問2詳解】證明:,則,其中,所以,數(shù)列為單調(diào)遞減數(shù)列,則,,,上式下式,得,所以,,因此,.19、(1)證明見解析;(2);(3)存在,構(gòu)造棱長(zhǎng)均為,底面相鄰兩邊的夾角為的直四棱柱即滿足條件.【解析】(1)由棱臺(tái)、棱錐的棱長(zhǎng)和相等可得,再由面面平行有,結(jié)合正四面體的結(jié)構(gòu)特征即可證結(jié)論.(2)取BC的中點(diǎn)M,連接PM、DM、AM,由線面垂直的判定可證平面PAM,即是二面角的平面角,進(jìn)而求其大小.(3)設(shè)直四棱柱的棱長(zhǎng)均為,底面相鄰兩邊的夾角為,結(jié)合已知條件用表示出即可確定直四棱柱.【小問1詳解】由棱臺(tái)與棱錐的棱長(zhǎng)和相等,∴,故.又截面底面ABC,則,,∴,從而,故為正四面體.【小問2詳解】取BC的中點(diǎn)M,連接PM、DM、AM,由,,得:平面PAM,而平面PAM,故,從而是二面角的平面角.由(1)知,三棱錐的各棱長(zhǎng)均為1,所以.由D是PA的中點(diǎn),得.在Rt△ADM中,,故二面角的大小為.【小問3詳解】存在滿足條件的直四棱柱.棱臺(tái)的棱長(zhǎng)和為定值6,體積為V.設(shè)直四棱柱的棱長(zhǎng)均為,底面相鄰兩邊的夾角為,則該四棱柱的棱長(zhǎng)和為6,體積為.因?yàn)檎拿骟w的體積是,所以,,從而,故構(gòu)造棱長(zhǎng)均為,底面相鄰兩邊的夾角為的直四棱柱,即滿足條件.20、(1)(2)【解析】(1)根據(jù)等比中項(xiàng)的性質(zhì)結(jié)合等差數(shù)列的通項(xiàng)公式求出,進(jìn)而得出數(shù)列的通項(xiàng)公式;(2)根據(jù)裂項(xiàng)相消求和法得出前項(xiàng)和為和.【小問1詳解】因?yàn)槌傻缺葦?shù)列,所以即,解得,所以;【小問2詳解】因?yàn)椋?,?1、(1);(2);(3)【解析】(1)由橢圓方程即可求出離心率.(2)求出橢圓的焦點(diǎn)即為拋物線的焦點(diǎn),即可求出答案.(3)由拋物線定義可求出點(diǎn)的坐標(biāo)【小問1詳解】由題意可知,.【小問2詳解】橢圓的右焦點(diǎn)為,故拋物線的焦點(diǎn)為.拋物線的方程為.【小問3詳解】設(shè)的坐標(biāo)為,,解得,.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030全球丙二醛行業(yè)調(diào)研及趨勢(shì)分析報(bào)告
- 2025年全球及中國(guó)低空洞焊膏行業(yè)頭部企業(yè)市場(chǎng)占有率及排名調(diào)研報(bào)告
- 2025辦公寫字樓出租合同范本2
- 活牛購(gòu)銷合同
- 廣場(chǎng)商鋪?zhàn)赓U合同
- 2025北京市非居民供熱采暖合同(合同版本)
- 文化傳播項(xiàng)目合同
- 門窗安裝工承包合同范本
- 提升跨部門協(xié)作能力的技能培訓(xùn)
- 合同協(xié)議框架性合作協(xié)議
- 幼兒平衡車訓(xùn)練課程設(shè)計(jì)
- 創(chuàng)業(yè)計(jì)劃路演-美甲
- 梁山伯與祝英臺(tái)小提琴譜樂譜
- 我國(guó)全科醫(yī)生培訓(xùn)模式
- 機(jī)構(gòu)編制重要事項(xiàng)的報(bào)告范文(5篇)
- DBJ51-T 188-2022 預(yù)拌流態(tài)固化土工程應(yīng)用技術(shù)標(biāo)準(zhǔn)
- 《長(zhǎng)津湖》電影賞析PPT
- 多維閱讀第10級(jí) who is who 看看都是誰
- 滑雪運(yùn)動(dòng)介紹
- 高二下學(xué)期英語閱讀限時(shí)訓(xùn)練(一)
- 半導(dǎo)體制造工藝-13薄膜沉積(下)綜述課件
評(píng)論
0/150
提交評(píng)論