![2025屆江西省新余四中數(shù)學高二上期末教學質(zhì)量檢測試題含解析_第1頁](http://file4.renrendoc.com/view8/M02/1B/29/wKhkGWcb30yAVzopAAIHVbPXOsU046.jpg)
![2025屆江西省新余四中數(shù)學高二上期末教學質(zhì)量檢測試題含解析_第2頁](http://file4.renrendoc.com/view8/M02/1B/29/wKhkGWcb30yAVzopAAIHVbPXOsU0462.jpg)
![2025屆江西省新余四中數(shù)學高二上期末教學質(zhì)量檢測試題含解析_第3頁](http://file4.renrendoc.com/view8/M02/1B/29/wKhkGWcb30yAVzopAAIHVbPXOsU0463.jpg)
![2025屆江西省新余四中數(shù)學高二上期末教學質(zhì)量檢測試題含解析_第4頁](http://file4.renrendoc.com/view8/M02/1B/29/wKhkGWcb30yAVzopAAIHVbPXOsU0464.jpg)
![2025屆江西省新余四中數(shù)學高二上期末教學質(zhì)量檢測試題含解析_第5頁](http://file4.renrendoc.com/view8/M02/1B/29/wKhkGWcb30yAVzopAAIHVbPXOsU0465.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆江西省新余四中數(shù)學高二上期末教學質(zhì)量檢測試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.某學習小組研究一種衛(wèi)星接收天線(如圖①所示),發(fā)現(xiàn)其曲面與軸截面的交線為拋物線,在軸截面內(nèi)的衛(wèi)星波束呈近似平行狀態(tài)射入形為拋物線的接收天線,經(jīng)反射聚焦到焦點處(如圖②所示).已知接收天線的口徑(直徑)為3.6m,深度為0.6m,則該拋物線的焦點到頂點的距離為()A.1.35m B.2.05mC.2.7m D.5.4m2.設(shè)雙曲線的虛軸長為,焦距為,則雙曲線的漸近線方程為()A. B.C. D.3.已知,,,,則下列不等關(guān)系正確的是()A. B.C. D.4.設(shè)雙曲線:(,)的右頂點為,右焦點為,為雙曲線在第二象限上的點,直線交雙曲線于另一個點(為坐標原點),若直線平分線段,則雙曲線的離心率為()A. B.C. D.5.已知,,若,則實數(shù)的值為()A. B.C. D.26.傳說古希臘畢達哥拉斯學派的數(shù)學家用沙粒和小石子研究數(shù),他們根據(jù)沙粒和石子所排列的形狀把數(shù)分成許多類,若:三角形數(shù)、、、、,正方形數(shù)、、、、等等.如圖所示為正五邊形數(shù),將五邊形數(shù)按從小到大的順序排列成數(shù)列,則此數(shù)列的第4項為()A. B.C. D.7.在平面直角坐標系xOy中,過x軸上的點P分別向圓和圓引切線,記切線長分別為.則的最小值為()A.2 B.3C.4 D.58.已知、,則直線的傾斜角為()A. B.C. D.9.已知橢圓的左右焦點分別為,,點B為短軸的一個端點,則的周長為()A.20 B.18C.16 D.910.復數(shù)的共軛復數(shù)是A. B.C. D.11.丹麥數(shù)學家琴生(Jensen)是世紀對數(shù)學分析做出卓越貢獻的巨人,特別是在函數(shù)的凸凹性與不等式方面留下了很多寶貴的成果.設(shè)函數(shù)在上的導函數(shù)為,在上的導函數(shù)為,在上恒成立,則稱函數(shù)在上為“凹函數(shù)”.則下列函數(shù)在上是“凹函數(shù)”的是()A. B.C. D.12.南宋數(shù)學家楊輝在《詳解九章算法》和《算法通變本末》中,提出了一些新的垛積公式,他所討論的高階等差數(shù)列與一般等差數(shù)列不同,前后兩項之差并不相等,而是逐項差數(shù)之差或者高次差相等.對這類高階等差數(shù)列的研究,在楊輝之后一般稱為“垛積術(shù)”.現(xiàn)有一個高階等差數(shù)列,其前7項分別為1,5,11,21,37,61,95,則該數(shù)列的第7項為()A.101 B.99C.95 D.91二、填空題:本題共4小題,每小題5分,共20分。13.已知拋物線的焦點坐標為,則該拋物線上一點到焦點的距離的取值范圍是___________.14.若平面內(nèi)兩條直線,平行,則實數(shù)______15.直線的傾斜角為_______________.16.如圖的形狀出現(xiàn)在南宋數(shù)學家楊輝所著的《算法九章·商功》中,后人稱之為“三角垛”.已知某“三角垛”的最上層有1個球,第二層有3個球,第三層有6個球……設(shè)各層(從上往下)球數(shù)構(gòu)成一個數(shù)列,則___________,___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).若函數(shù)有兩個極值點,求實數(shù)的取值范圍.18.(12分)如圖,在平面直角坐標系上,已知圓的直徑,定直線到圓心的距離為,且直線垂直于直線,點是圓上異于、的任意一點,直線、分別交與、兩點(1)求過點且與圓相切的直線方程;(2)若,求以為直徑的圓方程;(3)當點變化時,以為直徑的圓是否過圓內(nèi)的一定點,若過定點,請求出定點;若不過定點,請說明理由19.(12分)甲、乙兩人獨立地對某一目標射擊,已知甲、乙能擊中的概率分別為,求:(1)甲、乙恰好有一人擊中的概率;(2)目標被擊中的概率20.(12分)已知圓C經(jīng)過,,三點,并且與y軸交于P,Q兩點,求線段PQ的長度.21.(12分)在中,角A,B,C的對邊分別是a,b,c,且.(1)求角B的大?。唬?)若,,且,求a.22.(10分)在直角坐標系中,直線的參數(shù)方程為(為參數(shù)).以原點O為極點,x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程為.(1)求直線的普通方程,曲線C的直角坐標方程;(2)設(shè)直線與曲線C相交于A,B兩點,點,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】根據(jù)題意先建立恰當?shù)淖鴺讼担稍O(shè)出拋物線方程,利用已知條件得出點在拋物線上,代入方程求得p值,進而求得焦點到頂點的距離.【詳解】如圖所示,在接收天線的軸截面所在平面上建立平面直角坐標系xOy,使接收天線的頂點(即拋物線的頂點)與原點O重合,焦點F在x軸上設(shè)拋物線的標準方程為,由已知條件可得,點在拋物線上,所以,解得,因此,該拋物線的焦點到頂點的距離為1.35m,故選:A.2、B【解析】求出、的值,即可得出雙曲線的漸近線方程.【詳解】由已知可得,,則,因此,該雙曲線的漸近線方程為.故選:B.3、C【解析】不等式性質(zhì)相關(guān)的題型,可以通過舉反例的方式判斷正誤.【詳解】若、均為負數(shù),因為,則,故A錯.若、,則,故B錯.由不等式的性質(zhì)可知,因為,所以,故C對.若,因為,所以,故D錯.故選:C.4、A【解析】由給定條件寫出點A,F(xiàn)坐標,設(shè)出點B的坐標,求出線段FC的中點坐標,由三點共線列式計算即得.【詳解】令雙曲線的半焦距為c,點,設(shè),由雙曲線對稱性得,線段FC的中點,因直線平分線段,即點D,A,B共線,于是有,即,即,離心率.故選:A5、D【解析】由,然后根據(jù)向量數(shù)量積的坐標運算即可求解.【詳解】解:因,,所以,因為,所以,即,解得,故選:D.6、D【解析】根據(jù)前三個五邊形數(shù)可推斷出第四個五邊形數(shù).【詳解】第一個五邊形數(shù)為,第二個五邊形數(shù)為,第三個五邊形數(shù)為,故第四個五邊形數(shù)為.故選:D.7、D【解析】利用兩點間的距離公式,將切線長的和轉(zhuǎn)化為到兩圓心的距離和,利用三點共線距離最小即可求解.詳解】,圓心,半徑,圓心,半徑設(shè)點P,則,即到與兩點距離之和的最小值,當、、三點共線時,的和最小,即的和最小值為.故選:D【點睛】本題考查了兩點間的距離公式,需熟記公式,屬于基礎(chǔ)題.8、B【解析】設(shè)直線的傾斜角為,利用直線的斜率公式求出直線的斜率,進而可得出直線的傾斜角.【詳解】設(shè)直線的傾斜角為,由斜率公式可得,,因此,.故選:B.9、B【解析】根據(jù)橢圓的定義求解【詳解】由橢圓方程知,所以,故選:B10、B【解析】因,故其共軛復數(shù).應選B.考點:復數(shù)的概念及運算.11、B【解析】根據(jù)“凹函數(shù)”的定義逐項驗證即可解出【詳解】對A,,當時,,所以A錯誤;對B,,在上恒成立,所以B正確;對C,,,所以C錯誤;對D,,,因為,所以D錯誤故選:B12、C【解析】根據(jù)所給數(shù)列找到規(guī)律:兩次后項減前項所得數(shù)列為公差為2的數(shù)列,進而反向確定原數(shù)列的第7項.【詳解】根據(jù)所給定義,用數(shù)列的后一項減去前一項得到一個數(shù)列,得到的數(shù)列也用后一項減去前一項得到一個數(shù)列,即得到了一個等差數(shù)列,如圖:故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)題意,求得,得到焦點坐標,結(jié)合拋物線的定義,得到,根據(jù),求得,即可求解.【詳解】由拋物線的焦點坐標為,可得,解得,設(shè)拋物線上的任意一點為,焦點為,由拋物線的定義可得,因為,所以,所以拋物線上一點到焦點的距離的取值范圍是.故答案為:.14、-1或2【解析】根據(jù)兩直線平行,利用直線平行的條件列出方程解得答案.【詳解】∵,∴,解得或,經(jīng)驗證都符合題意,故答案為:-1或215、【解析】由直線的斜率為,得到,即可求解.【詳解】由題意,可知直線的斜率為,設(shè)直線的傾斜角為,則,解得,即換線的傾斜角為.【點睛】本題主要考查直線的傾斜角的求解問題,其中解答中熟記直線的傾斜角與斜率的關(guān)系,合理準確計算是解答的關(guān)鍵,著重考查了運算與求解能力,屬于基礎(chǔ)題.16、①.②.【解析】根據(jù),,得到,利用累加法和等差數(shù)列求和公式求出,再利用裂項抵消法進行求和.【詳解】因為,,,,,以上個式子累加,得,則;因為,所以.故答案為:,.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、.【解析】求得,根據(jù)其在上有兩個零點,結(jié)合零點存在性定理,對參數(shù)進行分類討論,即可求得參數(shù)的取值范圍.【詳解】因為,所以,令,由題意可知在上有兩個不同零點.又,若,則,故在上為增函數(shù),這與在上有兩個不同零點矛盾,故.當時,,為增函數(shù),當時,,為減函數(shù),故,因為在上有兩個不同零點,故,即,即,取,,故在有一個零點,取,,令,,則,故在為減函數(shù),因為,故,故,故在有一個零點,故在上有兩個零點,故實數(shù)的取值范圍為.【點睛】本題考察利用導數(shù)由函數(shù)的極值點個數(shù)求參數(shù)的范圍,涉及零點存在定理,以及利用導數(shù)研究函數(shù)單調(diào)性,屬綜合困難題.18、(1)或(2)(3)過定點,定點坐標為【解析】(1)對所求直線的斜率是否存在進行分類討論,在所求直線斜率不存在時,直接驗證直線與圓相切;在所求直線斜率存在時,設(shè)所求直線方程為,利用點到直線的距離公式可得出關(guān)于的等式,求出的值,綜合可得出所求直線的方程;(2)分點在軸上方、點在軸下方兩種情況討論,求出點、的坐標,可得出所求圓的圓心坐標和半徑,即可得出所求圓的方程;(3)設(shè)直線的方程為,其中,求出點、的坐標,可求得以線段為直徑的圓的方程,并化簡圓的方程,可求得定點的坐標.【小問1詳解】解:易知圓的方程為,圓心為原點,半徑為,若所求直線的斜率不存在,則所求直線的方程為,此時直線與圓相切,合乎題意,若所求直線的斜率存在,設(shè)所求直線的方程為,即,由已知可得,解得,此時所求直線的方程為.綜上所述,過點且與圓相切的直線方程為或.【小問2詳解】解:易知直線的方程為,、,若點在軸上方,則直線的方程為,在直線的方程中,令,可得,即點,直線的方程為,在直線的方程中,令,可得,即點,線段的中點為,且,此時,所求圓的方程為;若點在軸下方,同理可求得所求圓的方程為.綜上所述,以為直徑的圓方程為.【小問3詳解】解:不妨設(shè)直線的方程為,其中,在直線的方程中,令,可得,即點,因為,則直線的方程為,在直線的方程中,令,可得,即點,線段中點為,,所以,以線段為直徑的圓的方程為,即,由,解得,因此,當點變化時,以為直徑的圓是否過圓內(nèi)的定點.19、(1);(2).【解析】(1)分為甲擊中且乙沒有擊中,和乙擊中且甲沒有擊中兩種情況,進而根據(jù)獨立事件概率公式求得答案;(2)先考慮甲乙都沒有擊中,進而根據(jù)對立事件概率公式和獨立事件概率公式求得答案.【小問1詳解】設(shè)甲、乙分別擊中目標為事件,,易知,相互獨立且,,甲、乙恰好有一人擊中的概率為.【小問2詳解】目標被擊中的概率為.20、【解析】設(shè)圓的方程為,代入點的坐標,求出,,,令,即可得出結(jié)論【詳解】解:設(shè)圓的方程為,則,,,,,即,令,可得,解得、,所以、,或、,,21、(1);(2).【解析】(1)根據(jù)已知條件,運用余弦定理化簡可求出;(2)由可求出,利用誘導公式和兩角和的正弦公式求出,再利用正弦定理即求.【小問1詳解】)∵且,∴,∴,∴,∵,∴.【小問2詳解】∵,∴,∴,∵,∴,∵,∴,又∵,,,∴.22、(1)直線的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 裝修進度款支付合同
- 藥品冷鏈運輸保密合同
- 商業(yè)空間裝修施工合同范本
- 包包購銷合同
- 咨詢服務合同終止協(xié)議書年
- 互聯(lián)網(wǎng)廣告投放策略與實踐案例
- 建筑項目居間合同
- 出租打印機合同年
- 圖書購銷合同范例
- 工程管理咨詢合同
- 血透失衡綜合征的護理課件
- 2023年中國社會科學評價研究院第一批專業(yè)技術(shù)人員招聘2人筆試參考題庫(共500題)答案詳解版
- CBCC中國建筑色卡色
- 建設(shè)工程項目法律風險防控培訓稿PPT講座
- GB/T 4745-2012紡織品防水性能的檢測和評價沾水法
- 軟件需求調(diào)研表-修改版
- 山東省中考物理總復習 八上 第1講 機械運動
- 北京理工大學應用光學課件(大全)李林
- 國家綜合性消防救援隊伍消防員管理規(guī)定
- 河南省三門峽市各縣區(qū)鄉(xiāng)鎮(zhèn)行政村村莊村名居民村民委員會明細
- 五年級上冊數(shù)學習題課件 簡便計算專項整理 蘇教版 共21張
評論
0/150
提交評論