![2025屆安徽省示范高中培優(yōu)聯(lián)盟數(shù)學(xué)高一上期末教學(xué)質(zhì)量檢測模擬試題含解析_第1頁](http://file4.renrendoc.com/view12/M08/27/37/wKhkGWcagu2ATrC4AAHNgqZN_Ko532.jpg)
![2025屆安徽省示范高中培優(yōu)聯(lián)盟數(shù)學(xué)高一上期末教學(xué)質(zhì)量檢測模擬試題含解析_第2頁](http://file4.renrendoc.com/view12/M08/27/37/wKhkGWcagu2ATrC4AAHNgqZN_Ko5322.jpg)
![2025屆安徽省示范高中培優(yōu)聯(lián)盟數(shù)學(xué)高一上期末教學(xué)質(zhì)量檢測模擬試題含解析_第3頁](http://file4.renrendoc.com/view12/M08/27/37/wKhkGWcagu2ATrC4AAHNgqZN_Ko5323.jpg)
![2025屆安徽省示范高中培優(yōu)聯(lián)盟數(shù)學(xué)高一上期末教學(xué)質(zhì)量檢測模擬試題含解析_第4頁](http://file4.renrendoc.com/view12/M08/27/37/wKhkGWcagu2ATrC4AAHNgqZN_Ko5324.jpg)
![2025屆安徽省示范高中培優(yōu)聯(lián)盟數(shù)學(xué)高一上期末教學(xué)質(zhì)量檢測模擬試題含解析_第5頁](http://file4.renrendoc.com/view12/M08/27/37/wKhkGWcagu2ATrC4AAHNgqZN_Ko5325.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆安徽省示范高中培優(yōu)聯(lián)盟數(shù)學(xué)高一上期末教學(xué)質(zhì)量檢測模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.函數(shù)f(x)=若f(x)=2,則x的值是()A. B.±C.0或1 D.2.下列說法正確的是A.棱柱被平面分成的兩部分可以都是棱柱 B.底面是矩形的平行六面體是長方體C.棱柱的底面一定是平行四邊形 D.棱錐的底面一定是三角形3.若,,則下列結(jié)論正確的是()A. B.C. D.4.“角小于”是“角是第一象限角”的()A.充要條件 B.充分不必要條件C.必要不充分條件 D.既不充分也不必要條件5.已知,則a,b,c的大小關(guān)系為()A. B.C. D.6.已知,,,則()A. B.C. D.7.函數(shù)f(x)=lnx﹣1的零點所在的區(qū)間是A(1,2) B.(2,3)C.(3,4) D.(4,5)8.中國傳統(tǒng)文化中很多內(nèi)容體現(xiàn)了數(shù)學(xué)的“對稱美”.如圖所示的太極圖是由黑白兩個魚形紋組成的圓形圖案,充分體現(xiàn)了相互變化、對稱統(tǒng)一的形式美、和諧美.給出定義:能夠?qū)A(為坐標原點)的周長和面積同時平分的函數(shù)稱為這個圓的“優(yōu)美函數(shù)”.給出下列命題:①對于任意一個圓,其“優(yōu)美函數(shù)”有無數(shù)個;②函數(shù)可以是某個圓的“優(yōu)美函數(shù)”;③正弦函數(shù)可以同時是無數(shù)個圓的“優(yōu)美函數(shù)”;④函數(shù)是“優(yōu)美函數(shù)”的充要條件為函數(shù)的圖象是中心對稱圖形A.①④ B.①③④C.②③ D.①③9.若實數(shù),滿足,則的最小值是()A.18 B.9C.6 D.210.設(shè),,,則的大小順序是A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.函數(shù)在區(qū)間上的單調(diào)性是______.(填寫“單調(diào)遞增”或“單調(diào)遞減”)12.已知函數(shù),,則函數(shù)的最大值為______.13.若不等式在上恒成立,則實數(shù)a的取值范圍為____.14.函數(shù)在上為單調(diào)遞增函數(shù),則實數(shù)的取值范圍是______15.已知,,則的值為_______.16.若向量與共線且方向相同,則___________三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知集合,.(1)求,;(2)若,且,求實數(shù)的取值范圍.18.已知函數(shù)(1)若的值域為R,求實數(shù)a的取值范圍;(2)若,解關(guān)于x的不等式.19.已知若,求方程的解;若關(guān)于x的方程在區(qū)間上有兩個不相等的實根、:求實數(shù)k的取值范圍;證明:20.已知角α的終邊經(jīng)過點P.(1)求sinα的值;(2)求的值.21.在中,頂點,,BC邊所在直線方程為.(1)求過點A且平行于BC的直線方程;(2)求線段AB的垂直平分線方程.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】根據(jù)函數(shù)值為2,分類討論即可.【詳解】若f(x)=2,①x≤-1時,x+2=2,解得x=0(不符合,舍去);②-1<x<2時,,解得x=(符合)或x=(不符,舍去);③x≥2時,2x=2,解得x=1(不符,舍去).綜上,x=.故選:A.2、A【解析】對于B.底面是矩形的平行六面體,它的側(cè)面不一定是矩形,故它也不一定是長方體,故B錯;對于C.棱柱的底面是平面多邊形,不一定是平行四邊形,故C錯;對于D.棱錐的底面是平面多邊形,不一定是三角形,故D錯;故選A考點:1.命題的真假;2.空間幾何體的特征3、C【解析】根據(jù)不等式的性質(zhì),逐一分析選項,即可得答案.【詳解】對于A:因為,所以,因為,所以,故A錯誤;對于B:因為,所以,且,所以,故B錯誤;對于C:因為,所以,又,所以,故C正確;對于D:因為,,所以,所以,故D錯誤.故選:C4、D【解析】利用特殊值法結(jié)合充分、必要條件的定義判斷可得出結(jié)論.【詳解】若角小于,取,此時,角不是第一象限角,即“角小于”“角是第一象限角”;若角是第一象限角,取,此時,,即“角小于”“角是第一象限角”.因此,“角小于”是“角是第一象限角”的既不充分也不必要條件.故選:D.5、B【解析】首先求出、,即可判斷,再利用作差法判斷,即可得到,再判斷,即可得解;【詳解】解:由,所以,可知,又由,有,又由,有,可得,即,故有.故選:B6、C【解析】求出集合,利用交集的定義可求得集合.【詳解】已知,,,則,因此,.故選:C.7、B【解析】∵,在遞增,而,∴函數(shù)的零點所在的區(qū)間是,故選B.8、D【解析】根據(jù)定義分析,優(yōu)美函數(shù)具備的特征是,函數(shù)關(guān)于圓心(即坐標原點)呈中心對稱.【詳解】對①,中心對稱圖形有無數(shù)個,①正確對②,函數(shù)是偶函數(shù),不關(guān)于原點成中心對稱.②錯誤對③,正弦函數(shù)關(guān)于原點成中心對稱圖形,③正確.對④,充要條件應(yīng)該是關(guān)于原點成中心對稱圖形,④錯誤故選D【點睛】仔細閱讀新定義問題,理解定義中優(yōu)美函數(shù)的含義,找到中心對稱圖形,即可判斷各項正誤.9、C【解析】,利用基本不等式注意等號成立條件,求最小值即可【詳解】∵,,∴當且僅當,即,時取等號∴的最小值為6故選:C【點睛】本題考查了利用基本不等式求和的最小值,注意應(yīng)用基本不等式的前提條件:“一正二定三相等”10、A【解析】利用對應(yīng)指數(shù)函數(shù)或?qū)?shù)函數(shù)的單調(diào)性,分別得到其與中間值0,1的大小比較,從而判斷的大小.【詳解】因為底數(shù)2>1,則在R上為增函數(shù),所以有;因為底數(shù),則為上的減函數(shù),所以有;因為底數(shù),所以為上的減函數(shù),所以有;所以,答案為A.【點睛】本題為比較大小的題型,常利用函數(shù)單調(diào)性法以及中間值法進行大小比較,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、單調(diào)遞增【解析】求出函數(shù)單調(diào)遞增區(qū)間,再判斷作答.【詳解】函數(shù)的圖象對稱軸為,因此,函數(shù)的單調(diào)遞增區(qū)間為,而,所以函數(shù)在區(qū)間上的單調(diào)性是單調(diào)遞增.故答案為:單調(diào)遞增12、##【解析】根據(jù)分段函數(shù)的定義,化簡后分別求每段上函數(shù)的最值,比較即可得出函數(shù)最大值.【詳解】當時,即或,解得或,此時,當時,即時,,綜上,當時,,故答案為:13、【解析】把不等式變形為,分和情況討論,數(shù)形結(jié)合求出答案.【詳解】解:變形為:,即在上恒成立令,若,此時在上單調(diào)遞減,,而當時,,顯然不合題意;當時,畫出兩個函數(shù)的圖象,要想滿足在上恒成立,只需,即,解得:綜上:實數(shù)a的取值范圍是.故答案為:14、【解析】令∴即函數(shù)的增區(qū)間為,又函數(shù)在上為單調(diào)遞增函數(shù)∴令得:,即,得到:,又∴實數(shù)的取值范圍是故答案為15、-.【解析】將和分別平方計算可得.【詳解】∵,∴,∴,∴,又∵,∴,∴,故答案為:-.【點晴】此題考同腳三角函數(shù)基本關(guān)系式應(yīng)用,屬于簡單題.16、2【解析】向量共線可得坐標分量之間的關(guān)系式,從而求得n.【詳解】因為向量與共線,所以;由兩者方向相同可得.【點睛】本題主要考查共線向量的坐標表示,熟記共線向量的充要條件是求解關(guān)鍵.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),(2)【解析】(1)解出集合,利用并集、補集以及交集的定義可求得結(jié)果;(2)由已知條件可得出關(guān)于的不等式,即可解得實數(shù)的取值范圍.【小問1詳解】解:因為,或,所以,,.【小問2詳解】解:因為,所以或,解得或,所以的取值范圍為.18、(1)或.(2)見解析.【解析】(1)當時,的值域為,當時,的值域為,如滿足題意則,解之即可;(2)當時,,即恒成立,當時,即,分類討論解不等式即可.試題解析:(1)當時,的值域為當時,的值域為,的值域為,解得或的取值范圍是或.(2)當時,,即恒成立,當時,即(?。┊敿磿r,無解:(ⅱ)當即時,;(ⅲ)當即時①當時,②當時,綜上(1)當時,解集為(2)當時,解集(3)當時,解集為(4)當時,解集為19、(1)(2),見解析【解析】當時,分類討論,去掉絕對值,直接進行求解,即可得到答案討論兩個根、的范圍,結(jié)合一元二次方程根與系數(shù)之間的關(guān)系進行轉(zhuǎn)化求解【詳解】當時,,當時,,由,得,得舍或;當時,,由得舍;故當時,方程的解是不妨設(shè),因為,若、,與矛盾,若、,與是單調(diào)函數(shù)矛盾,則;則…①…②由①,得:,由②,得:;的取值范圍是;聯(lián)立①、②消去k得:,即,即,則,,,即【點睛】本題主要考查了函數(shù)與方程的應(yīng)用,根據(jù)條件判斷根的范圍,以及利用一元二次方程與一次方程的性質(zhì)進行轉(zhuǎn)化是解決本題的關(guān)鍵,著重考查了分析問題和解答問題的能力,試題綜合性較強,屬于中檔試題20、(1);(2)【解析】(1)由正弦函數(shù)定義計算;(2)由誘導(dǎo)公式,商數(shù)關(guān)系變形化簡,由余弦函數(shù)定義計算代入可得.【詳解】(1)因為點
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- GB 45186-2024限制快遞過度包裝要求
- PB-22-7-Hydroxyquinoline-isomer-生命科學(xué)試劑-MCE-6693
- 9-Keto-tafluprost-生命科學(xué)試劑-MCE-9653
- 二零二五年度未簽勞動合同員工勞動仲裁應(yīng)對與勞動權(quán)益保障協(xié)議
- 2025年度文化創(chuàng)意產(chǎn)業(yè)計件工資與創(chuàng)意成果量化勞動合同
- 2025年度二零二五年度化妝品銷售提成獎勵合同
- 科技孵化器創(chuàng)新創(chuàng)業(yè)者的搖籃
- 跨學(xué)科視角下的小學(xué)生音樂素養(yǎng)培養(yǎng)研究
- 小學(xué)心理健康教育的實踐與思考
- 校園體育活動安全與防護措施
- 全面解讀新能源法律風險與應(yīng)對措施
- 彩鋼瓦架子施工方案
- 民法學(xué)詳細教案
- 浙江省杭州市2023年中考一模語文試題及答案
- 上海市楊浦區(qū)2022屆初三中考二模英語試卷+答案
- 高中英語原版小說整書閱讀指導(dǎo)《奇跡男孩》(wonder)-Part one 講義
- GB/T 4745-2012紡織品防水性能的檢測和評價沾水法
- 國家綜合性消防救援隊伍消防員管理規(guī)定
- 2023年全國各地高考英語試卷:完形填空匯編(9篇-含解析)
- 五年級上冊數(shù)學(xué)習題課件 簡便計算專項整理 蘇教版 共21張
- 疼痛科的建立和建設(shè)
評論
0/150
提交評論