




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
貴州省“陽光校園·空中黔課”階段性檢測(cè)2025屆高二數(shù)學(xué)第一學(xué)期期末聯(lián)考模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.函數(shù)的單調(diào)增區(qū)間為()A. B.C. D.2.已知角的頂點(diǎn)與坐標(biāo)原點(diǎn)重合,始邊與x軸的非負(fù)半軸重合,角終邊上有一點(diǎn)(1,2),為銳角,且,則()A.-18 B.-6C. D.3.已知?jiǎng)狱c(diǎn)滿足,則動(dòng)點(diǎn)的軌跡是()A.橢圓 B.直線C.線段 D.圓4.已知直線與圓相交于,兩點(diǎn),則的取值范圍為()A. B.C. D.5.已知函數(shù)在處取得極值,則的極大值為()A. B.C. D.6.已知圓:,點(diǎn),則點(diǎn)到圓上點(diǎn)的最小距離為()A.1 B.2C. D.7.如圖,矩形BDEF所在平面與正方形ABCD所在平面互相垂直,,,點(diǎn)P在線段EF上.給出下列命題:①存在點(diǎn)P,使得直線平面ACF;②存在點(diǎn)P,使得直線平面ACF;③直線DP與平面ABCD所成角的正弦值的取值范圍是;④三棱錐的外接球被平面ACF所截得的截面面積是.其中所有真命題的序號(hào)()A.①③ B.①④C.①②④ D.①③④8.在平行六面體中,,,,則()A. B.5C. D.39.函數(shù)的圖象如圖所示,則下列大小關(guān)系正確的是()A.B.C.D.10.已知i是虛數(shù)單位,復(fù)數(shù)z=,則復(fù)數(shù)z的虛部為()A.i B.-iC.1 D.-111.有7名同學(xué)參加百米競(jìng)賽,預(yù)賽成績(jī)各不相同,取前3名參加決賽,小明同學(xué)已經(jīng)知道了自己的成績(jī),為了判斷自己是否能進(jìn)入決賽,他還需要知道7名同學(xué)成績(jī)的()A.平均數(shù) B.眾數(shù)C.中位數(shù) D.方差12.已知橢圓的離心率為,直線與橢圓交于兩點(diǎn),為坐標(biāo)原點(diǎn),且,則橢圓的方程為A B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列{}的前n項(xiàng)和為,則該數(shù)列的通項(xiàng)公式__________.14.拋物線()上的一點(diǎn)到其焦點(diǎn)F的距離______.15.已知向量,,若向量與向量平行,則實(shí)數(shù)______16.若關(guān)于的不等式恒成立,則實(shí)數(shù)的取值范圍是______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)討論的單調(diào)性;(2)當(dāng)時(shí),求函數(shù)在內(nèi)的零點(diǎn)個(gè)數(shù).18.(12分)已知斜率為的直線與橢圓:交于,兩點(diǎn)(1)若線段的中點(diǎn)為,求的值;(2)若,求證:原點(diǎn)到直線的距離為定值19.(12分)已知數(shù)列{an}為等差數(shù)列,且a1+a5=-12,a4+a8=0.(1)求數(shù)列{an}的通項(xiàng)公式;(2)若等比數(shù)列{bn}滿足b1=-8,b2=a1+a2+a3,求數(shù)列{bn}的通項(xiàng)公式20.(12分)已知橢圓的離心率是,且過點(diǎn).(1)求橢圓的標(biāo)準(zhǔn)方程;(2)若直線與橢圓交于A、B兩點(diǎn),線段的中點(diǎn)為,為坐標(biāo)原點(diǎn),且,求面積的最大值.21.(12分)已知函數(shù)在處取得極值7(1)求的值;(2)求函數(shù)在區(qū)間上的最大值22.(10分)已知數(shù)列滿足,,設(shè).(1)證明數(shù)列為等比數(shù)列,并求通項(xiàng)公式;(2)設(shè),求數(shù)列的前項(xiàng)和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】先求定義域,再求導(dǎo)數(shù),令解不等式,即可.【詳解】函數(shù)的定義域?yàn)榱睿獾霉蔬x:D【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,屬于中檔題.2、A【解析】由終邊上的點(diǎn)可得,由同角三角函數(shù)的平方、商數(shù)關(guān)系有,再應(yīng)用差角、倍角正切公式即可求.【詳解】由題設(shè),,,則,又,,所以.故選:A3、C【解析】根據(jù)兩點(diǎn)之間的距離公式的幾何意義即可判定出動(dòng)點(diǎn)軌跡.【詳解】由題意可知表示動(dòng)點(diǎn)到點(diǎn)和點(diǎn)的距離之和等于,又因?yàn)辄c(diǎn)和點(diǎn)的距離等于,所以動(dòng)點(diǎn)的軌跡為線段.故選:4、C【解析】求得直線恒過的定點(diǎn),找出弦長(zhǎng)取得最值的狀態(tài),利用弦長(zhǎng)公式求解即可.【詳解】因直線方程為:,整理得,故該直線恒過定點(diǎn),又,故點(diǎn)在圓內(nèi),又圓的圓心為則,此時(shí)直線過圓心;當(dāng)直線與直線垂直時(shí),取得最小值,此時(shí).故的取值范圍為.故選:.5、B【解析】首先求出函數(shù)的導(dǎo)函數(shù),依題意可得,即可求出參數(shù)的值,從而得到函數(shù)解析式,再根據(jù)導(dǎo)函數(shù)得到函數(shù)單調(diào)性,即可求出函數(shù)的極值點(diǎn),從而求出函數(shù)的極大值;【詳解】解:因?yàn)椋?,依題意可得,即,解得,所以定義域?yàn)?,且,令,解得或,令解得,即在和上單調(diào)遞增,在上單調(diào)遞減,即在處取得極大值,在處取得極小值,所以;故選:B6、C【解析】寫出圓的圓心和半徑,求出距離的最小值,再結(jié)合圓外一點(diǎn)到圓上點(diǎn)的距離最小值的方法即可求解.【詳解】由圓:,得圓,半徑為,所以,所以點(diǎn)到圓上點(diǎn)的最小距離為.故選:C.7、D【解析】當(dāng)點(diǎn)P是線段EF中點(diǎn)時(shí)判斷①;假定存在點(diǎn)P,使得直線平面ACF,推理導(dǎo)出矛盾判斷②;利用線面角的定義轉(zhuǎn)化列式計(jì)算判斷③;求出外接圓面積判斷④作答.【詳解】取EF中點(diǎn)G,連DG,令,連FO,如圖,在正方形ABCD中,O為BD中點(diǎn),而BDEF是矩形,則且,即四邊形DGFO是平行四邊形,即有,而平面ACF,平面ACF,于是得平面ACF,當(dāng)點(diǎn)P與G重合時(shí),直線平面ACF,①正確;假定存在點(diǎn)P,使得直線平面ACF,而平面ACF,則,又,從而有,在中,,DG是直角邊EF上中線,顯然在線段EF上不存在點(diǎn)與D連線垂直于DG,因此,假設(shè)是錯(cuò)的,即②不正確;因平面平面,平面平面,則線段EF上的動(dòng)點(diǎn)P在平面上的射影在直線BD上,于是得是直線DP與平面ABCD所成角的,在矩形BDEF中,當(dāng)P與E不重合時(shí),,,而,則,當(dāng)P與E重合時(shí),,,因此,,③正確;因平面平面,平面平面,,平面,則平面,,在中,,顯然有,,由正弦定理得外接圓直徑,,三棱錐的外接球被平面ACF所截得的截面是的外接圓,其面積為,④正確,所以所給命題中正確命題的序號(hào)是①③④.故選:D【點(diǎn)睛】結(jié)論點(diǎn)睛:兩個(gè)平面互相垂直,則一個(gè)平面內(nèi)任意一點(diǎn)在另一個(gè)平面上的射影都在這兩個(gè)平面的交線上.8、B【解析】由,則結(jié)合已知條件及模長(zhǎng)公式即可求解.【詳解】解:,所以,所以,故選:B.9、C【解析】根據(jù)導(dǎo)數(shù)的幾何意義可得答案.【詳解】因?yàn)楹瘮?shù)在某點(diǎn)處的導(dǎo)數(shù)值表示的是此點(diǎn)處切線的斜率,所以由圖可得,故選:C10、C【解析】先通過復(fù)數(shù)的除法運(yùn)算求出z,進(jìn)而求出虛部.【詳解】由題意,,則z的虛部為1.故選:C.11、C【解析】根據(jù)中位數(shù)的性質(zhì),結(jié)合題設(shè)按成績(jī)排序7選3,即可知還需明確的成績(jī)數(shù)據(jù)信息.【詳解】由題設(shè),7名同學(xué)參加百米競(jìng)賽,要取前3名參加決賽,則成績(jī)從高到低排列,確定7名同學(xué)成績(jī)的中位數(shù),即第3名的成績(jī)便可判斷自己是否能進(jìn)入決賽.故選:C.12、D【解析】根據(jù)等腰直角三角形的性質(zhì)可得,將代入橢圓方程,結(jié)合離心率為以及性質(zhì)列方程組求得與的值,從而可得結(jié)果.【詳解】設(shè)直線與橢圓在第一象限的交點(diǎn)為,因?yàn)?,所以,即,由可得,,故所求橢圓的方程為.故選D.【點(diǎn)睛】本題主要考查橢圓的標(biāo)準(zhǔn)方程與性質(zhì),以及橢圓離心率的應(yīng)用,意在考查對(duì)基礎(chǔ)知識(shí)掌握的熟練程度,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、2n+1【解析】由計(jì)算,再計(jì)算可得結(jié)論【詳解】由題意時(shí),,又適合上式,所以故答案為:【點(diǎn)睛】本題考查由求通項(xiàng)公式,解題根據(jù)是,但要注意此式不含,14、【解析】將點(diǎn)坐標(biāo)代入方程中可求得拋物線的方程,從而可得到焦點(diǎn)坐標(biāo),進(jìn)而可求出【詳解】解:為拋物線上一點(diǎn),即有,,拋物線的方程為,焦點(diǎn)為,即有.故答案為:5.15、2【解析】先求出的坐標(biāo),進(jìn)而根據(jù)空間向量平行的坐標(biāo)運(yùn)算求得答案.【詳解】由題意,,因?yàn)?,所以存在?shí)數(shù)使得.故答案為:2.16、【解析】設(shè)由題可知,當(dāng)時(shí),可得適合題意,當(dāng)時(shí),可求函數(shù)的最小值即得,當(dāng)時(shí)不合題意,即得.【詳解】設(shè),由題可知,∴,當(dāng)時(shí),,適合題意,所以,當(dāng)時(shí),令,則,此時(shí)時(shí),,單調(diào)遞減,,,單調(diào)遞增,∴,又,∴,∴,即,解得,當(dāng)時(shí),時(shí),,,故的值有正有負(fù),不合題意;綜上,實(shí)數(shù)的取值范圍是.故答案為:.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:本題考查不等式恒成立求參數(shù)的取值范圍,設(shè)由題可知,當(dāng)時(shí),利用導(dǎo)數(shù)可求函數(shù)的最小值,結(jié)合,可得,進(jìn)而通過解,即得.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)當(dāng),在單調(diào)遞增;當(dāng),在單調(diào)遞增,在單調(diào)遞減.(2)0.【解析】(1)求得,對(duì)參數(shù)分類討論,即可由每種情況下的正負(fù)確定函數(shù)的單調(diào)性;(2)根據(jù)題意求得,利用進(jìn)行放縮,只需證即,再利用導(dǎo)數(shù)通過證明從而得到恒成立,則問題得解.【小問1詳解】以為,其定義域?yàn)?,又,故?dāng)時(shí),,在單調(diào)遞增;當(dāng)時(shí),令,可得,且令,解得,令,解得,故在單調(diào)遞增,在單調(diào)遞減.綜上所述:當(dāng),在單調(diào)遞增;當(dāng),在單調(diào)遞增,在單調(diào)遞減.【小問2詳解】因?yàn)?,故可得,則,;下證恒成立,令,則,故在單調(diào)遞減,又當(dāng)時(shí),,故在恒成立,即;因?yàn)?,故,令,下證在恒成立,要證恒成立,即證,又,故即證,令,則,令,解得,此時(shí)該函數(shù)單調(diào)遞增,令,解得,此時(shí)該函數(shù)單調(diào)遞減,又當(dāng)時(shí),,也即;令,則,令,解得,此時(shí)該函數(shù)單調(diào)遞減,令,解得,此時(shí)該函數(shù)單調(diào)遞增,又當(dāng)時(shí),,也即;又,故恒成立,則在恒成立,又,故當(dāng)時(shí),恒成立,則在上的零點(diǎn)個(gè)數(shù)是.【點(diǎn)睛】本題考察利用導(dǎo)數(shù)研究含參函數(shù)的單調(diào)性,以及函數(shù)零點(diǎn)問題的處理;本題第二問處理的關(guān)鍵是通過分離參數(shù)和構(gòu)造函數(shù),證明恒成立,屬綜合困難題.18、(1);(2)證明見解析.【解析】(1)設(shè)出兩點(diǎn)的坐標(biāo),利用點(diǎn)差法即可求出的值;(2)設(shè)出直線的方程,與橢圓方程聯(lián)立,寫韋達(dá);根據(jù),求出,從而可證明原點(diǎn)到直線的距離為定值【小問1詳解】設(shè),則,,兩式相減,得,即,所以,即,又因?yàn)榫€段的中點(diǎn)為,所以,即;【小問2詳解】設(shè)斜率為的直線為,,由,得,所以,,因?yàn)?,所以,即,所以,所以,即,所以,原點(diǎn)到直線的距離為.所以原點(diǎn)到直線的距離為定值.19、(1)an=2n-12;(2).【解析】(1)根據(jù)等差數(shù)列的性質(zhì)得到,然后根據(jù)等差數(shù)列的通項(xiàng)公式求出和的值即可.(2)根據(jù)(1)的條件求出b2=-24,b1=-8,然后根據(jù)等比數(shù)列的通項(xiàng)公式求出的值即可.【小問1詳解】設(shè)等差數(shù)列{an}的公差為d,因?yàn)閍1+a5=2a3=-12,a4+a8=2a6=0,所以,所以,解得,所以an=-10+2(n-1)=2n-12.【小問2詳解】設(shè)等比數(shù)列{bn}的公比為q,因?yàn)閎2=a1+a2+a3=-24,b1=-8,所以-8q=-24,即q=3,因此.20、(1);(2)2.【解析】(1)根據(jù)已知條件列出關(guān)于a、b、c的方程組即可求得橢圓標(biāo)準(zhǔn)方程;(2)直線l和x軸垂直時(shí),根據(jù)已知條件求出此時(shí)△AOB面積;直線l和x軸不垂直時(shí),設(shè)直線方程為點(diǎn)斜式y(tǒng)=kx+t,代入橢圓方程得二次方程,結(jié)合韋達(dá)定理和弦長(zhǎng)得k和t關(guān)系,表示出△AOB的面積,結(jié)合基本不等式即可求解三角形面積最值.【小問1詳解】由題知,解得,∴橢圓的標(biāo)準(zhǔn)方程為.【小問2詳解】當(dāng)軸時(shí),位于軸上,且,由可得,此時(shí);當(dāng)不垂直軸時(shí),設(shè)直線的方程為,與橢圓交于,,由,得.得,,從而已知,可得.∵.設(shè)到直線的距離為,則,結(jié)合化簡(jiǎn)得此時(shí)的面積最大,最大值為2.當(dāng)且僅當(dāng)即時(shí)取等號(hào),綜上,的面積的最大值為2.21、(1);(2).【解析】(1)先對(duì)函數(shù)求導(dǎo),根據(jù)題中條件,列出方程組求解,即可得出結(jié)果;(2)先由(1)得到,導(dǎo)數(shù)的方法研究其單調(diào)性,進(jìn)而可求出最值.【詳解】(1)因?yàn)?,所以,又函?shù)在處取得極值7,,解得;,所以,由得或;由得;滿足題意;(2)又,由(1)得在上單調(diào)遞增,在上單調(diào)遞減,因此【點(diǎn)睛】方法點(diǎn)睛:該題考查的是有關(guān)利用導(dǎo)數(shù)研究函數(shù)的問題,解題方法如下:(1)先對(duì)函數(shù)求導(dǎo),根據(jù)題意,結(jié)合函數(shù)在某個(gè)點(diǎn)處取
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 胸外科手術(shù)疼痛管理
- 秋冬預(yù)防感冒知識(shí)
- 2024濮陽縣職業(yè)教育培訓(xùn)中心工作人員招聘考試及答案
- 2024海南珠江源高級(jí)職業(yè)技術(shù)學(xué)校工作人員招聘考試及答案
- 設(shè)備保養(yǎng)與維修承包合同書
- 汽車托管租賃合同全新趨勢(shì)分析
- 金屬工藝品銷售合同
- 房屋租賃居間合同書
- 標(biāo)準(zhǔn)化的駕校場(chǎng)地租賃合同模板
- 合伙合同債務(wù)分割協(xié)議范文
- H酒店品牌管理策略研究
- 物業(yè)費(fèi)用測(cè)算表
- S7-200-SMART-PLC-應(yīng)用教程電課件
- 無人機(jī)地形匹配導(dǎo)航
- 新人教版高中英語必修第二冊(cè)-Unit-5THE-VIRTUAL-CHOIR精美課件
- 一身邊的“雷鋒”(課件)五年級(jí)下冊(cè)綜合實(shí)踐活動(dòng)
- 高考語文復(fù)習(xí):詩歌語言鑒賞
- 工程造價(jià)司法鑒定報(bào)告案例
- 廣東判后答疑申請(qǐng)書
- 學(xué)校開展“躺平式”教師專項(xiàng)整治工作實(shí)施方案心得體會(huì)2篇
- 起動(dòng)機(jī)的構(gòu)造解析課件
評(píng)論
0/150
提交評(píng)論