




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
北京海淀外國語2025屆高二數(shù)學第一學期期末學業(yè)水平測試模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知直線的方程為,則該直線的傾斜角為()A. B.C. D.2.已知A,B,C是橢圓M:上三點,且A(A在第一象限,B關于原點對稱,,過A作x軸的垂線交橢圓M于點D,交BC于點E,若直線AC與BC的斜率之積為,則()A.橢圓M的離心率為 B.橢圓M的離心率為C. D.3.如圖,在棱長為2的正方體中,點P在截面上(含邊界),則線段的最小值等于()A. B.C. D.4.如圖,在三棱錐S—ABC中,點E,F(xiàn)分別是SA,BC的中點,點G在棱EF上,且滿足,若,,,則()A. B.C. D.5.已知函數(shù),則的單調遞增區(qū)間為().A. B.C. D.6.下列說法正確的有()個.①向量,,,不一定成立;②圓與圓外切③若,則數(shù)是數(shù),的等比中項.A.1 B.2C.3 D.07.已知橢圓的長軸長為10,焦距為8,則該橢圓的短軸長等于()A.3 B.6C.8 D.128.已知雙曲線的焦點在y軸上,且實半軸長為4,虛半軸長為5,則雙曲線的標準方程為()A.=1 B.=1C.=1 D.=19.直線x-y+1=0被橢圓+y2=1所截得的弦長|AB|等于()A. B.C. D.10.已知實數(shù),滿足,則的最小值是()A. B.C. D.11.已知集合,,則中元素的個數(shù)為()A.3 B.2C.1 D.012.在圓內,過點的最長弦和最短弦分別是AC和BD,則四邊形ABCD的面積為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設,則曲線在點處的切線的傾斜角是_______14.若函數(shù)在[1,3]單調遞增,則a的取值范圍___15.在的展開式中項的系數(shù)為______.(結果用數(shù)值表示)16.已知拋物線的焦點為,點在上,且,則______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)【2018年新課標I卷文】已知函數(shù)(1)設是的極值點.求,并求的單調區(qū)間;(2)證明:當時,18.(12分)已知點F為拋物線:()的焦點,點在拋物線上且在x軸上方,.(1)求拋物線的方程;(2)已知直線與曲線交于A,B兩點(點A,B與點P不重合),直線PA與x軸、y軸分別交于C、D兩點,直線PB與x軸、y軸分別交于M、N兩點,當四邊形CDMN的面積最小時,求直線l的方程.19.(12分)在①成等差數(shù)列;②成等比數(shù)列;③這三個條件中任選一個,補充在下面的問題中,并對其求解.問題:已知為數(shù)列的前項和,,且___________.(1)求數(shù)列的通項公式;(2)記,求數(shù)列的前項和.注:如果選擇多個條件分別解答,按第一個解答計分.20.(12分)已知拋物線的焦點為,拋物線上的點的橫坐標為1,且.(1)求拋物線的方程;(2)過焦點作兩條相互垂直的直線(斜率均存在),分別與拋物線交于、和、四點,求四邊形面積的最小值.21.(12分)如圖所示,在四棱錐中,平面,底面是等腰梯形,.且(1)證明:平面平面;(2)若,求平面與平面的夾角的余弦值22.(10分)2021年國慶期間,某電器商場為了促銷,給出了兩種優(yōu)惠方案,顧客只能選擇其中的一種,方案一:每消費滿8千元,可減8百元.方案二:消費金額超過8千元(含8千元),可抽取小球三次,其規(guī)則是依次從裝有2個紅色小球、2個黃色小球的一號箱子,裝有2個紅色小球、2個黃色小球的二號箱子,裝有1個紅色小球、3個黃色小球的三號箱子各抽一個小球(這些小球除顏色外完全相同),其優(yōu)惠情況為:若抽出3個紅色小球則打6折;若抽出2個紅色小球則打7折;若抽出1個紅色小球則打8折;若沒有抽出紅色小球則不打折.(1)若有兩名顧客恰好消費8千元,他們都選中第二方案,求至少有一名顧客比選擇方案一更優(yōu)惠的概率;(2)若你朋友在該商場消費了1萬元,請用所學知識幫助你朋友分析一下應選擇哪種付款方案.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】設直線的傾斜角為,則,解方程即可.【詳解】由已知,設直線的傾斜角為,則,又,所以.故選:C2、C【解析】設出點,,的坐標,將點,分別代入橢圓方程兩式作差,構造直線和的斜率之積,得到,即可求橢圓的離心率,利用,求出,可知點在軸上,且為的中點,則.【詳解】設,,,則,,,兩式相減并化簡得,即,則,則AB錯誤;∵,,∴,又∵,∴,即,解得,則點在軸上,且為的中點即,則正確.故選:C.3、B【解析】根據(jù)體積法求得到平面的距離即可得【詳解】由題意的最小值就是到平面的距離正方體棱長為2,則,,設到平面的距離為,由得,解得故選:B4、D【解析】利用空間向量的加、減運算即可求解.詳解】由題意可得故選:D5、D【解析】利用導數(shù)分析函數(shù)單調性【詳解】的定義域為,,令,解得故的單調遞增區(qū)間為故選:D6、A【解析】由向量數(shù)量積為實數(shù),以及向量共線定理,即可判斷①;求出圓心距,即可判斷兩圓位置關系,從而判斷②;取,即可判斷③【詳解】對于①,與共線,與共線,故不一定成立,故①正確;對于②,圓的圓心為,半徑為,圓可變形為,故其圓心為,半徑為,則圓心距,由,所以兩圓相交,故②錯誤;對于③,若,取,則數(shù)不是數(shù)的等比中項,故③錯誤故選:A7、B【解析】根據(jù)橢圓中的關系即可求解.【詳解】橢圓的長軸長為10,焦距為8,所以,,可得,,所以,可得,所以該橢圓的短軸長,故選:B.8、D【解析】根據(jù)雙曲線的性質求解即可.【詳解】雙曲線的焦點在y軸上,且實半軸長為4,虛半軸長為5,可得a=4,b=5,所以雙曲線方程為:=1.故選:D.9、A【解析】聯(lián)立方程組,求出交點坐標,利用兩點間的距離公式求距離.【詳解】由得交點為(0,1),,則|AB|==.故選:A.10、A【解析】將化成,即可求出的最小值【詳解】由可化為,所以,解得,因此最小值是故選:A11、B【解析】集合中的元素為點集,由題意,可知集合A表示以為圓心,為半徑的單位圓上所有點組成的集合,集合B表示直線上所有的點組成的集合,又圓與直線相交于兩點,,則中有2個元素.故選B.【名師點睛】求集合的基本運算時,要認清集合元素的屬性(是點集、數(shù)集或其他情形)和化簡集合,這是正確求解集合運算的兩個先決條件.集合中元素的三個特性中的互異性對解題影響較大,特別是含有字母的集合,在求出字母的值后,要注意檢驗集合中的元素是否滿足互異性.12、D【解析】由題,求得圓的圓心和半徑,易知最長弦,最短弦為過點與垂直的弦,再求得BD的長,可得面積.【詳解】圓化簡為可得圓心為易知過點的最長弦為直徑,即而最短弦為過與垂直的弦,圓心到的距離:所以弦所以四邊形ABCD的面積:故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】利用導數(shù)的定義,化簡整理,可得,根據(jù)導數(shù)的幾何意義,即可求得答案.【詳解】因為=,所以,則曲線在點處的切線斜率為,即,又所以所求切線的傾斜角為故答案為:14、【解析】由在區(qū)間上恒成立來求得的取值范圍.【詳解】依題意在區(qū)間上恒成立,在上恒成立,所以.故答案為:15、【解析】先求解出該二項式展開式的通項,然后求解出滿足題意的項數(shù)值,帶入通項即可求解出展開式的系數(shù).【詳解】展開式通項為,由題意,令,解得,,所以項的系數(shù)為.故答案為:.16、【解析】由拋物線的焦半徑公式可求得的值.【詳解】拋物線的準線方程為,由拋物線的焦半徑公式可得,解得.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)a=;f(x)在(0,2)單調遞減,在(2,+∞)單調遞增.(2)證明見解析.【解析】分析:(1)先確定函數(shù)的定義域,對函數(shù)求導,利用f′(2)=0,求得a=,從而確定出函數(shù)的解析式,之后觀察導函數(shù)的解析式,結合極值點的位置,從而得到函數(shù)的增區(qū)間和減區(qū)間;(2)結合指數(shù)函數(shù)的值域,可以確定當a≥時,f(x)≥,之后構造新函數(shù)g(x)=,利用導數(shù)研究函數(shù)的單調性,從而求得g(x)≥g(1)=0,利用不等式的傳遞性,證得結果.詳解:(1)f(x)的定義域為,f′(x)=aex–由題設知,f′(2)=0,所以a=從而f(x)=,f′(x)=當0<x<2時,f′(x)<0;當x>2時,f′(x)>0所以f(x)在(0,2)單調遞減,在(2,+∞)單調遞增(2)當a≥時,f(x)≥設g(x)=,則當0<x<1時,g′(x)<0;當x>1時,g′(x)>0.所以x=1是g(x)的最小值點故當x>0時,g(x)≥g(1)=0因此,當時,點睛:該題考查的是有關導數(shù)的應用問題,涉及到的知識點有導數(shù)與極值、導數(shù)與最值、導數(shù)與函數(shù)的單調性的關系以及證明不等式問題,在解題的過程中,首先要保證函數(shù)的生存權,先確定函數(shù)的定義域,之后根據(jù)導數(shù)與極值的關系求得參數(shù)值,之后利用極值的特點,確定出函數(shù)的單調區(qū)間,第二問在求解的時候構造新函數(shù),應用不等式的傳遞性證得結果.18、(1);(2)或.【解析】(1)根據(jù)給定條件結合拋物線定義求出p即可作答.(2)聯(lián)立直線l與拋物線的方程,用點A,B坐標表示出點C,D,M,N的坐標,列出四邊形CDMN面積的函數(shù)關系,借助均值不等式計算得解.【小問1詳解】拋物線的準線:,由拋物線定義得,解得,所以拋物線的方程為.【小問2詳解】因為點在上,且,則,即,依題意,,設,,由消去并整理得,則有,,直線PA的斜率是,方程為,令,則,令,則,即點C,點D,同理點M,點N,則,,四邊形的面積有:,當且僅當,即時取“=”,所以當時四邊形CDMN的面積最小值為4,直線l的方程為或.19、(1)(2)【解析】(1)由可知數(shù)列是公比為的等比數(shù)列,若選①:結合等差數(shù)列等差中項的性質計算求解;若選②:利用等比數(shù)列等比中項的性質計算求解,若選③:利用直接計算;(2)根據(jù)對數(shù)的運算,可知數(shù)列為等差數(shù)列,直接求和即可.小問1詳解】由,當時,,即,即,所以數(shù)列是公比為的等比數(shù)列,若選①:由,即,,所以數(shù)列的通項公式為;若選②:由,所以,所以數(shù)列的通項公式為;若選③:由,即,所以數(shù)列的通項公式為;【小問2詳解】由(1)得,所以數(shù)列等差數(shù)列,所以.20、(1)(2)2【解析】(1)根據(jù)拋物線的定義求出,即可得到拋物線方程;(2)設直線的方程為:,、,則直線的方程為:,聯(lián)立直線與拋物線方程,消元、列出韋達定理,再根據(jù)弦長公式表示出,同理可得,則四邊形的面積,最后利用基本不等式計算可得;【小問1詳解】解:由已知知:,解得,故拋物線的方程為:.【小問2詳解】解:由(1)知:,設直線方程為:,、,則直線的方程為:,聯(lián)立得,則,所以,,∴,同理可得,∴四邊形的面積,當且僅當,即時等號成立,∴四邊形面積的最小值為2.21、(1)證明見解析(2)【解析】(1)由線面垂直的判定定理可得平面,再由面面垂直的判定定理可得平面平面;(2)以為坐標原點,以,所在直線分別為,軸,以過點垂直于平面的直線為軸建立空間直角坐標系.求出平面的一個法向量、平面的法向量,由二面角的空間向量求法可得答案.【小問1詳解】因為四邊形是等腰梯形,,所以,所以,即因為平面,所以,又因為,所以平面,因為平面,所以平面平面【小問2詳解】以為坐標原點,以,所在直線分別為,軸,以過點垂直于平面的直線為軸建立如圖所示的空間直角坐標系設,則,所以,,,由(1)可知平面的一個法向量為設平面的法向量為,因為,,所以得令,則,,所以,則,所以平面與平面的夾角的余弦值為.22、(1)(2)選擇方案二更劃算【解析】(1)要使方案二比方案一優(yōu)惠,則需要抽出至少一個紅球,求出沒有抽出紅色小球的概率,再根據(jù)對立事件的概率公式即可得出答案;(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025翻譯服務合同(翻譯中心)
- 2025網絡版有條件借款合同范文
- 2025物業(yè)公司服務合同
- 社區(qū)個人工作計劃提升社區(qū)居民教育意識
- 2025財務咨詢合同書模板
- 中級收入建筑合同標準文本
- 2025公司員工勞動合同(電子版)模板
- 安陽木質游樂施工方案
- 2025物流和倉儲業(yè)勞動合同(示范文本)
- 寫中介合同樣本
- 檔案管理實務基礎試題及答案
- 上海楊浦區(qū)社區(qū)工作者考試真題2024
- 廣東省云浮市新興縣2023-2024學年八年級下學期語文期中試卷(含答案)
- DeepSeek在法律服務領域的應用前景
- 質控工具在護理管理中的應用
- 2025年糧油保管員職業(yè)技能資格知識考試題(附答案)
- DeepSeek人工智能的特點應用挑戰(zhàn)與未來發(fā)展介紹課件
- 2025-2030年中國氣象探測系統(tǒng)市場十三五規(guī)劃規(guī)劃與發(fā)展建議分析報告
- 皮膚病靶向治療專家共識(2025版)解讀課件
- GB/T 31114-2024冰淇淋質量要求
- NDA模板:2024年英文商業(yè)保密協(xié)議標準格式一
評論
0/150
提交評論