版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
安徽省馬鞍山市和縣一中2025屆數(shù)學(xué)高二上期末復(fù)習(xí)檢測模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在數(shù)列中,若,,則()A.16 B.32C.64 D.1282.已知A(-1,1,2),B(1,0,-1),設(shè)D在直線AB上,且,設(shè)C(λ,+λ,1+λ),若CD⊥AB,則λ的值為()A. B.-C. D.3.若雙曲線的離心率為3,則的最小值為()A. B.1C. D.24.如圖,已知雙曲線的左右焦點(diǎn)分別為、,,是雙曲線右支上的一點(diǎn),,直線與軸交于點(diǎn),的內(nèi)切圓半徑為,則雙曲線的離心率是()A. B.C. D.5.已知點(diǎn)在拋物線:上,點(diǎn)為拋物線的焦點(diǎn),,點(diǎn)P到y(tǒng)軸的距離為4,則拋物線C的方程為()A. B.C. D.6.2021年是中國共產(chǎn)黨百年華誕,3月24日,中宣部發(fā)布中國共產(chǎn)黨成立100周年慶祝活動標(biāo)識(如圖1).其中“100”的兩個“0”設(shè)計為兩個半徑為R的相交大圓,分別內(nèi)含一個半徑為r的同心小圓,且同心小圓均與另一個大圓外切(如圖2).已知,則由其中一個圓心向另一個小圓引的切線長與兩大圓的公共弦長之比為()A. B.3C. D.7.拋物線的焦點(diǎn)為F,點(diǎn)為該拋物線上的動點(diǎn),點(diǎn)A是拋物線的準(zhǔn)線與坐標(biāo)軸的交點(diǎn),則的最大值是()A.2 B.C. D.8.已知雙曲線的左、右焦點(diǎn)分別為,,為坐標(biāo)原點(diǎn),為雙曲線在第一象限上的點(diǎn),直線,分別交雙曲線的左,右支于另一點(diǎn),,若,且,則雙曲線的離心率為()A. B.3C.2 D.9.若正三棱柱的所有棱長都相等,D是的中點(diǎn),則直線AD與平面所成角的正弦值為A. B.C. D.10.設(shè)拋物線的焦點(diǎn)為F,過點(diǎn)F且垂直于x軸的直線與拋物線C交于A,B兩點(diǎn),若,則()A1 B.2C.4 D.811.公比為的等比數(shù)列,其前項和為,前項積為,滿足,.則下列結(jié)論正確的是()A.的最大值為B.C.最大值為D.12.設(shè).若,則=()A. B.C. D.e二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列的通項公式為,記數(shù)列的前項和為,則__________,的最小值為__________14.阿波羅尼斯與阿基米德、歐幾里得被稱為亞歷山大時期的數(shù)學(xué)三巨匠.“阿波羅尼斯圓”是他的代表成果之一:平面上動點(diǎn)P到兩定點(diǎn)A,B的距離之比滿足(且,t為常數(shù)),則點(diǎn)的軌跡為圓.已知在平面直角坐標(biāo)系中,,,動點(diǎn)P滿足,則P點(diǎn)的軌跡為圓,該圓方程為_________;過點(diǎn)的直線交圓于兩點(diǎn),且,則_________15.直線l交橢圓于A,B兩點(diǎn),線段AB的中點(diǎn)為,直線是線段AB的垂直平分線,若,D為垂足,則D點(diǎn)的軌跡方程是______16.以點(diǎn)為圓心,且與直線相切的圓的方程是____________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)函數(shù),且存在兩個極值點(diǎn)、,其中.(1)求實(shí)數(shù)的取值范圍;(2)若恒成立,求最小值.18.(12分)如圖,已知等腰梯形,,為等腰直角三角形,,把沿折起(1)當(dāng)時,求證:;(2)當(dāng)平面平面時,求平面與平面所成二面角的平面角的正弦值19.(12分)噪聲污染已經(jīng)成為影響人們身體健康和生活質(zhì)量的嚴(yán)重問題,為了解聲音強(qiáng)度D(單位:)與聲音能量I(單位:)之間的關(guān)系,將測量得到的聲音強(qiáng)度D和聲音能量I的數(shù)據(jù)作了初步處理,得到如圖所示的散點(diǎn)圖:參考數(shù)據(jù):其中,,,,,,,,(1)根據(jù)散點(diǎn)圖判斷,與哪一個適宜作為聲音強(qiáng)度D關(guān)于聲音能量I的回歸模型?(給出判斷即可,不必說明理由)(2)求聲音強(qiáng)度D關(guān)于聲音能量I回歸方程(3)假定當(dāng)聲音強(qiáng)度D大于時,會產(chǎn)生噪聲污染.城市中某點(diǎn)P處共受到兩個聲源的影響,這兩個聲通的聲音能量分別是和,且.已知點(diǎn)P處的聲音能量等于與之和.請根據(jù)(2)中的回歸方程,判斷點(diǎn)P處是否受到噪聲污染,并說明理由參考公式:對于一組數(shù)據(jù),其回歸直線斜率和截距的最小二乘估計公式分別為:20.(12分)如圖,已知四邊形中,,,,且,求四邊形的面積21.(12分)已知拋物線的焦點(diǎn)為F,傾斜角為45°的直線m過點(diǎn)F,若此拋物線上存在3個不同的點(diǎn)到m的距離為,求此拋物線的準(zhǔn)線方程22.(10分)已知等差數(shù)列的前項和為,,且.(1)求數(shù)列的通項公式;(2)證明:數(shù)列的前項和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】根據(jù)題意,為等比數(shù)列,用基本量求解即可.【詳解】因?yàn)?,故是首項?,公比為2的等比數(shù)列,故.故選:C2、B【解析】設(shè)D(x,y,z),根據(jù)求出D(,,0),再根據(jù)CD⊥AB得·=2(-λ)+λ-3(-1-λ)=0,解方程即得λ的值.【詳解】設(shè)D(x,y,z),則=(x+1,y-1,z-2),=(2,-1,-3),=(1-x,-y,-1-z),∵=2,∴∴∴D(,,0),=(-λ,-λ,-1-λ),∵⊥,∴·=2(-λ)+λ-3(-1-λ)=0,∴λ=-故選:B【點(diǎn)睛】(1)本題主要考查向量的線性運(yùn)算和空間向量垂直的坐標(biāo)表示,意在考查學(xué)生對這些知識的掌握水平和分析推理能力.(2).3、D【解析】由雙曲線的離心率為3和,求得,化簡,結(jié)合基本不等式,即可求解.【詳解】由題意,雙曲線的離心率為3,即,即,又由,可得,所以,當(dāng)且僅當(dāng),即時,“”成立.故選:D【點(diǎn)睛】使用基本不等式解答問題的策略:1、利用基本不等式求最值時,要注意三點(diǎn):一是各項為正;二是尋求定值;三是考慮等號成立的條件;2、若多次使用基本不等式時,容易忽視等號的條件的一致性,導(dǎo)致錯解;3、巧用“拆”“拼”“湊”:在使用基本不等式時,要特別注意“拆”“拼”“湊”等技巧,使其滿足基本不等式中的“正、定、等”的條件.4、D【解析】根據(jù)給定條件結(jié)合直角三角形內(nèi)切圓半徑與邊長的關(guān)系求出雙曲線實(shí)半軸長a,再利用離心率公式計算作答.【詳解】依題意,,的內(nèi)切圓半徑,由直角三角形內(nèi)切圓性質(zhì)知:,由雙曲線對稱性知,,于是得,即,又雙曲線半焦距c=2,所以雙曲線的離心率.故選:D【點(diǎn)睛】結(jié)論點(diǎn)睛:二直角邊長為a,b,斜邊長為c的直角三角形內(nèi)切圓半徑.5、D【解析】由拋物線定義可得,注意開口方向.詳解】設(shè)∵點(diǎn)P到y(tǒng)軸的距離是4∴∵,∴.得:.故選:D.6、C【解析】作出圖形,進(jìn)而根據(jù)勾股定理并結(jié)合圓與圓的位置關(guān)系即可求得答案.【詳解】如示意圖,由題意,,則,又,,所以,所以.故選:C.7、B【解析】設(shè)直線的傾斜角為,設(shè)垂直于準(zhǔn)線于,由拋物線的性質(zhì)可得,則,當(dāng)直線PA與拋物線相切時,最小,取得最大值,設(shè)出直線方程得到直線和拋物線相切時的點(diǎn)P的坐標(biāo),然后進(jìn)行計算得到結(jié)果.【詳解】設(shè)直線的傾斜角為,設(shè)垂直于準(zhǔn)線于,由拋物線的性質(zhì)可得,所以則,當(dāng)最小時,則值最大,所以當(dāng)直線PA與拋物線相切時,θ最大,即最小,由題意可得,設(shè)切線PA的方程為:,,整理可得,,可得,將代入,可得,所以,即P的橫坐標(biāo)為1,即P的坐標(biāo),所以,,所以的最大值為:,故選:B【點(diǎn)睛】關(guān)鍵點(diǎn)睛:本題主要考查了拋物線的簡單性質(zhì).解題的關(guān)鍵是利用了拋物線的定義.一般和拋物線有關(guān)的小題,很多時可以應(yīng)用結(jié)論來處理的;平時練習(xí)時應(yīng)多注意拋物線的結(jié)論的總結(jié)和應(yīng)用.尤其和焦半徑聯(lián)系的題目,一般都和定義有關(guān),實(shí)現(xiàn)點(diǎn)點(diǎn)距和點(diǎn)線距的轉(zhuǎn)化8、D【解析】由雙曲線的定義可設(shè),,由平面幾何知識可得四邊形為平行四邊形,三角形,用余弦定理,可得,的方程,再由離心率公式可得所求值【詳解】由雙曲線的定義可得,由,可得,,結(jié)合雙曲線性質(zhì)可以得到,而,結(jié)合四邊形對角線平分,可得四邊形為平行四邊形,結(jié)合,故,對三角形,用余弦定理,得到,結(jié)合,可得,,,代入上式子中,得到,即,結(jié)合離心率滿足,即可得出,故選:D【點(diǎn)睛】本題考查求雙曲線的離心率,熟記雙曲線的簡單性質(zhì)即可,屬于??碱}型.9、A【解析】建立空間直角坐標(biāo)系,得到相關(guān)點(diǎn)的坐標(biāo)后求出直線的方向向量和平面的法向量,借助向量的運(yùn)算求出線面角的正弦值【詳解】取AC的中點(diǎn)為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系設(shè)三棱柱的棱長為2,則,∴設(shè)為平面的一個法向量,由故令,得設(shè)直線AD與平面所成角為,則,所以直線AD與平面所成角的正弦值為故選A【點(diǎn)睛】空間向量的引入為解決立體幾何問題提供了較好的方法,解題時首先要建立適當(dāng)?shù)淖鴺?biāo)系,得到相關(guān)點(diǎn)的坐標(biāo)后借助向量的運(yùn)算,將空間圖形的位置關(guān)系或數(shù)量關(guān)系轉(zhuǎn)化為向量的運(yùn)算處理.在解決空間角的問題時,首先求出向量夾角的余弦值,然后再轉(zhuǎn)化為所求的空間角.解題時要注意向量的夾角和空間角之間的聯(lián)系和區(qū)別,避免出現(xiàn)錯誤10、C【解析】根據(jù)焦點(diǎn)弦的性質(zhì)即可求出【詳解】依題可知,,所以故選:C11、A【解析】根據(jù)已知條件,判斷出,即可判斷選項D,再根據(jù)等比數(shù)列的性質(zhì),判斷,,由此判斷出選項A,B,C.【詳解】根據(jù)題意,等比數(shù)列滿足條件,,,若,則,則,,則,這與已知條件矛盾,所以不符合題意,故選項D錯誤;因?yàn)?,,,所以,,,則,,數(shù)列前2021項都大于1,從第2022項開始都小于1,因此是數(shù)列中的最大值,故選項A正確由等比數(shù)列的性質(zhì),,故選項B不正確;而,由以上分析可知其無最大值,故C錯誤;故選:A12、D【解析】由題可得,將代入解方程即可.【詳解】∵,∴,∴,解得.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、①.②.【解析】首先確定的正負(fù),分別在和兩種情況下求得,代入即可求得;由可求得,分別在和兩種情況下結(jié)合一次函數(shù)和對勾函數(shù)單調(diào)性得到最小值,綜合可得最終結(jié)果.【詳解】令,解得:,則當(dāng)時,;當(dāng)時,;當(dāng)時,;當(dāng)時,;;,當(dāng)時,;當(dāng)時,在上單調(diào)遞減,在上單調(diào)遞增,又,,,當(dāng)時,;綜上所述:.故答案為:;.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:本題考查含絕對值的數(shù)列前項和的求解問題,解題關(guān)鍵是能夠確定數(shù)列的變號項,從而以變號項為分類基準(zhǔn)進(jìn)行分類討論得到數(shù)列的前項和;求解數(shù)列中的最值問題的關(guān)鍵是能夠利用數(shù)列與函數(shù)的關(guān)系,結(jié)合函數(shù)單調(diào)性和來進(jìn)行求解.14、①.②.【解析】設(shè),根據(jù)可得圓的方程,利用垂徑定理可求.【詳解】設(shè),則,整理得到,即.因?yàn)椋蕿榈闹悬c(diǎn),過圓心作的垂線,垂足為,則為的中點(diǎn),則,故,解得,故答案為:,.15、【解析】設(shè)直線l的方程為,代入橢圓方程并化簡,然后根據(jù)M為線段AB的中點(diǎn)結(jié)合根與系數(shù)的關(guān)系得到k,t間的關(guān)系,進(jìn)而寫出線段AB的垂直平分線的直線方程,可以判斷它過定點(diǎn)E,再考慮直線l的斜率不存在的情況,根據(jù)題意可知,點(diǎn)D在以O(shè)E為直徑的圓上,最后求出點(diǎn)D的軌跡方程.【詳解】設(shè)直線l的方程為,代入橢圓方程并化簡得:,設(shè),則,解得.因?yàn)橹本€是線段AB的垂直平分線,故直線:,即:令,此時,,于是直線過定點(diǎn)當(dāng)直線l的斜率不存在時,,直線也過定點(diǎn)點(diǎn)D在以O(shè)E為直徑的圓上,則圓心為,半徑,所以點(diǎn)D軌跡方程為:16、【解析】根據(jù)直線與圓相切,圓心到直線距離等于半徑,由點(diǎn)到直線的距離公式求出半徑,然后可得.【詳解】圓心到直線的距離,又圓與直線相切,所以,所以圓的方程為.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)存在兩個極值點(diǎn),等價于其導(dǎo)函數(shù)有兩個相異零點(diǎn);(2)適當(dāng)構(gòu)造函數(shù),并注意與關(guān)系,轉(zhuǎn)化為函數(shù)求最大值問題,即可求得的范圍.【小問1詳解】(),,函數(shù)存在兩個極值點(diǎn)、,且,關(guān)于的方程,即在內(nèi)有兩個不等實(shí)根,令,,即,,實(shí)數(shù)的取值范圍是.【小問2詳解】函數(shù)在上有兩個極值點(diǎn),由(1)可得,由,得,則,,,,,,,,令,則且,令,,,再設(shè),則,,,即在上是減函數(shù),(1),,在上是增函數(shù),(1),,恒成立,恒成立,,的最小值為.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:本題考查導(dǎo)函數(shù),函數(shù)的單調(diào)性,最值,不等式證明,考查學(xué)生分析解決問題的能力,解題的關(guān)鍵是將恒成立,轉(zhuǎn)化為恒成立,化簡,令,則化為,然后構(gòu)造函數(shù),利用導(dǎo)數(shù)求出其最大值即可,屬于較難題18、(1)證明見解析(2)【解析】(1)取的中點(diǎn)E,連,證明四邊形為平行四邊形,從而可得為等邊三角形,四邊形為菱形,從而可證,,即可得平面,再根據(jù)線面垂直的性質(zhì)即可得證;(2)取的中點(diǎn)M,連接,以B為空間坐標(biāo)原點(diǎn),向量分別為x,y,z軸建立空間直角坐標(biāo)系,利用向量法即可得出答案.【小問1詳解】解:取的中點(diǎn)E,連,∵,∴,∵,∴四邊形為平行四邊形,∵,∴,∵,∴為等邊三角形,四邊形為菱形,∴,,∴∴,∵,,,平面,,∴平面,∵平面,∴;【小問2詳解】解:取的中點(diǎn)M,連接,由(1)知,,∵平面平面,,∴平面,以B為空間坐標(biāo)原點(diǎn),向量分別為x,y,z軸建立空間直角坐標(biāo)系,則,設(shè)平面的法向量為,由,,有,取,可得,設(shè)平面的法向量為,由,,有,取,有,有,故平面與平面所成二面角的正弦值為19、(1)更適合(2)(3)點(diǎn)P處會受到噪聲污染,理由見解析【解析
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度城市規(guī)劃臨時用地租賃協(xié)議2篇
- 2025年度智能車位共享平臺租賃合同模板4篇
- 二零二五年度內(nèi)地居民離婚后財產(chǎn)分割法律援助合同
- 2025年度美容院美容院連鎖品牌形象設(shè)計與推廣合同
- 2025年度土地承包經(jīng)營權(quán)租賃與農(nóng)業(yè)機(jī)械化服務(wù)合同
- 二零二五年度噴漆工職業(yè)危害告知與培訓(xùn)實(shí)施合同
- 2025年無子女離婚撫養(yǎng)權(quán)協(xié)議范本子女撫養(yǎng)費(fèi)用明細(xì)12篇
- 二手車交易協(xié)議范本2024年度版版B版
- 二零二五年度變壓器租賃與電力系統(tǒng)優(yōu)化設(shè)計協(xié)議3篇
- 二零二五年度仿古茶具展覽展示與推廣服務(wù)合同3篇
- 廣西桂林市2023-2024學(xué)年高二上學(xué)期期末考試物理試卷
- 財務(wù)指標(biāo)與財務(wù)管理
- 2023-2024學(xué)年西安市高二數(shù)學(xué)第一學(xué)期期末考試卷附答案解析
- 部編版二年級下冊道德與法治第三單元《綠色小衛(wèi)士》全部教案
- 【京東倉庫出庫作業(yè)優(yōu)化設(shè)計13000字(論文)】
- 保安春節(jié)安全生產(chǎn)培訓(xùn)
- 初一語文上冊基礎(chǔ)知識訓(xùn)練及答案(5篇)
- 勞務(wù)合同樣本下載
- 血液透析水處理系統(tǒng)演示
- GB/T 27030-2006合格評定第三方符合性標(biāo)志的通用要求
- GB/T 13663.2-2018給水用聚乙烯(PE)管道系統(tǒng)第2部分:管材
評論
0/150
提交評論