




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
河南省南陽中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末經(jīng)典試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知焦點(diǎn)在軸上的雙曲線的一條漸近線方程為,則該雙曲線的離心率為()A. B.C.2 D.2.雙曲線的焦點(diǎn)到漸近線的距離為()A. B.2C. D.3.若1,m,9三個(gè)數(shù)成等比數(shù)列,則圓錐曲線的離心率是()A.或 B.或2C.或 D.或24.已知雙曲線,其中一條漸近線與x軸的夾角為,則雙曲線的漸近線方程是()A. B.C. D.5.函數(shù)的圖象如圖所示,是f(x)的導(dǎo)函數(shù),則下列數(shù)值排序正確的是()A B.C. D.6.函數(shù)的定義域?yàn)椋鋵?dǎo)函數(shù)的圖像如圖所示,則函數(shù)極值點(diǎn)的個(gè)數(shù)為()A.2 B.3C.4 D.57.下列雙曲線中,以為一個(gè)焦點(diǎn),以為一個(gè)頂點(diǎn)的雙曲線方程是()A. B.C. D.8.若、、為空間三個(gè)單位向量,,且與、所成的角均為,則()A.5 B.C. D.9.已知等比數(shù)列中,,,則公比()A. B.C. D.10.設(shè)是周期為2的奇函數(shù),當(dāng)時(shí),,則()A. B.C. D.11.已知橢圓C1:+y2=1(m>1)與雙曲線C2:–y2=1(n>0)的焦點(diǎn)重合,e1,e2分別為C1,C2的離心率,則A.m>n且e1e2>1 B.m>n且e1e2<1C.m<n且e1e2>1 D.m<n且e1e2<112.已知拋物線的焦點(diǎn)是雙曲線的一個(gè)焦點(diǎn),則雙曲線的漸近線方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知雙曲線-=1(a>0,b>0)與拋物線y2=8x有一個(gè)共同的焦點(diǎn)F,兩曲線的一個(gè)交點(diǎn)為P,若|FP|=5,則點(diǎn)F到雙曲線的漸近線的距離為_____.14.等比數(shù)列的前n項(xiàng)和,則的通項(xiàng)公式為___________.15.若點(diǎn)P為雙曲線上任意一點(diǎn),則P滿足性質(zhì):點(diǎn)P到右焦點(diǎn)的距離與它到直線的距離之比為離心率e,若C的右支上存在點(diǎn)Q,使得Q到左焦點(diǎn)的距離等于它到直線的距離的6倍,則雙曲線的離心率的取值范圍是______16.已知橢圓方程為,左、右焦點(diǎn)分別為、,P為橢圓上的動(dòng)點(diǎn),若的最大值為,則橢圓的離心率為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線:的焦點(diǎn)為,點(diǎn)在上,點(diǎn)在的內(nèi)側(cè),且的最小值為.(1)求的方程;(2)為坐標(biāo)原點(diǎn),點(diǎn)A在y軸正半軸上,點(diǎn)B,C為E上兩個(gè)不同的點(diǎn),其中B點(diǎn)在第四象限,且AB,互相垂直平分,求四邊形AOBC的面積.18.(12分)已知橢圓:的左、右焦點(diǎn)分別為,,過點(diǎn)的直線l交橢圓于A,兩點(diǎn),的中點(diǎn)坐標(biāo)為.(1)求直線l的方程;(2)求的面積.19.(12分)已知直線與雙曲線交于,兩點(diǎn),為坐標(biāo)原點(diǎn)(1)當(dāng)時(shí),求線段的長;(2)若以為直徑的圓經(jīng)過坐標(biāo)原點(diǎn),求的值20.(12分)總書記指出:“我們既要綠水青山,也要金山銀山.”新能源汽車環(huán)保、節(jié)能,以電代油,減少排放,既符合我國的國情,也代表了世界汽車產(chǎn)業(yè)發(fā)展的方向.工業(yè)部表示,到2025年中國的汽車總銷量將達(dá)到3500萬輛,并希望新能源汽車至少占總銷量的五分之一.江蘇某新能源公司年初購入一批新能源汽車充電樁,每臺16200元,第一年每臺設(shè)備的維修保養(yǎng)費(fèi)用為1100元,以后每年增加400元,每臺充電樁每年可給公司收益8100元(1)每臺充電樁第幾年開始獲利?(2)每臺充電樁在第幾年時(shí),年平均利潤最大21.(12分)已知圓的圓心在直線上,且圓與軸相切于點(diǎn)(1)求圓的標(biāo)準(zhǔn)方程;(2)若直線與圓相交于,兩點(diǎn),求的面積22.(10分)已知橢圓,其上頂點(diǎn)與左右焦點(diǎn)圍成的是面積為的正三角形.(1)求橢圓的方程;(2)過橢圓的右焦點(diǎn)的直線(的斜率存在)交橢圓于兩點(diǎn),弦的垂直平分線交軸于點(diǎn),問:是否是定值?若是,求出定值:若不是,說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】由題意,化簡即可得出雙曲線的離心率【詳解】解:由題意,.故選:D2、A【解析】根據(jù)點(diǎn)到直線距離公式進(jìn)行求解即可.【詳解】由雙曲線的標(biāo)準(zhǔn)方程可知:,該雙曲線的焦點(diǎn)坐標(biāo)為:,雙曲線的漸近線方程為:,所以焦點(diǎn)到漸近線的距離為:,故選:A3、D【解析】運(yùn)用等比數(shù)列的性質(zhì)可得,再討論,,求出曲線的,,由離心率公式計(jì)算即可得到【詳解】三個(gè)數(shù)1,,9成等比數(shù)列,則,解得,,當(dāng)時(shí),曲線為橢圓,則;當(dāng)時(shí),曲線為為雙曲線,則離心率故選:4、C【解析】由已知條件計(jì)算可得,即得到結(jié)果.【詳解】由雙曲線,可知漸近線方程為,又雙曲線的一條漸近線與x軸的夾角為,故,即漸近線方程為.故選:C5、A【解析】結(jié)合導(dǎo)數(shù)的幾何意義確定正確選項(xiàng).【詳解】,表示兩點(diǎn)連線斜率,表示在處切線的斜率;表示在處切線的斜率;根據(jù)圖象可知,.故選:A6、C【解析】根據(jù)給定的導(dǎo)函數(shù)的圖象,結(jié)合函數(shù)的極值的定義,即可求解.【詳解】如圖所示,設(shè)導(dǎo)函數(shù)的圖象與軸的交點(diǎn)分別為,根據(jù)函數(shù)的極值的定義可知在該點(diǎn)處的左右兩側(cè)的導(dǎo)數(shù)符號相反,可得為函數(shù)的極大值點(diǎn),為函數(shù)的極小值點(diǎn),所以函數(shù)極值點(diǎn)的個(gè)數(shù)為4個(gè).故選:C.7、C【解析】設(shè)出雙曲線方程,根據(jù)題意,求得,即可選擇.【詳解】因?yàn)殡p曲線的一個(gè)焦點(diǎn)是,故可設(shè)雙曲線方程為,且;又為一個(gè)頂點(diǎn),故可得,解得,則雙曲線方程為:.故選:.8、C【解析】先求的平方后再求解即可.【詳解】,故,故選:C9、C【解析】利用等比中項(xiàng)的性質(zhì)可求得的值,再由可求得結(jié)果.【詳解】由等比中項(xiàng)的性質(zhì)可得,解得,又,,故選:C.10、A【解析】由周期函數(shù)得,再由奇函數(shù)的性質(zhì)通過得結(jié)論【詳解】∵函數(shù)是周期為2的周期函數(shù),∴,而,又函數(shù)為奇函數(shù),∴.故選A【點(diǎn)睛】本題考查函數(shù)的周期性與奇偶性,屬于基礎(chǔ)題.此類題型,求函數(shù)值時(shí),一般先用周期性化自變量到已知區(qū)間關(guān)于原點(diǎn)對稱的區(qū)間,然后再由奇函數(shù)性質(zhì)求得函數(shù)值11、A【解析】詳解】試題分析:由題意知,即,由于m>1,n>0,可得m>n,又=,故.故選A【考點(diǎn)】橢圓的簡單幾何性質(zhì),雙曲線的簡單幾何性質(zhì)【易錯(cuò)點(diǎn)睛】計(jì)算橢圓的焦點(diǎn)時(shí),要注意;計(jì)算雙曲線的焦點(diǎn)時(shí),要注意.否則很容易出現(xiàn)錯(cuò)誤12、B【解析】根據(jù)拋物線和寫出焦點(diǎn)坐標(biāo),利用題干中的坐標(biāo)相等,解出,結(jié)合從而求出答案.【詳解】拋物線的焦點(diǎn)為,雙曲線的,,所以,所以雙曲線的右焦點(diǎn)為:,由題意,,兩邊平方解得,,則雙曲線的漸近線方程為:.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】設(shè)點(diǎn)為,由拋物線定義知,,求出點(diǎn)P坐標(biāo)代入雙曲線方程得到的關(guān)系式,求出雙曲線的漸近線方程,利用點(diǎn)到直線的距離公式求解即可.【詳解】由題意得F(2,0),因?yàn)辄c(diǎn)P在拋物線y2=8x上,|FP|=5,設(shè)點(diǎn)為,由拋物線定義知,,解得,不妨取P(3,2),代入雙曲線-=1,得-=1,又因?yàn)閍2+b2=4,解得a=1,b=,因?yàn)殡p曲線的漸近線方程為,所以雙曲線的漸近線為y=±x,由點(diǎn)到直線的距離公式可得,點(diǎn)F到雙曲線的漸近線的距離.故答案為:【點(diǎn)睛】本題考查雙曲線和拋物線方程及其幾何性質(zhì);考查運(yùn)算求解能力和知識遷移能力;靈活運(yùn)用雙曲線和拋物線的性質(zhì)是求解本題的關(guān)鍵;屬于中檔題、常考題型.14、【解析】利用的關(guān)系,結(jié)合是等比數(shù)列,即可求得結(jié)果.【詳解】因?yàn)椋十?dāng)時(shí),,則,又當(dāng)時(shí),,因?yàn)槭堑缺葦?shù)列,故也滿足,即,故,此時(shí)滿足,則.故答案為:.15、【解析】若Q到的距離為有,由題設(shè)有,結(jié)合雙曲線離心率的性質(zhì),即可求離心率的范圍.【詳解】由題意,,即,整理有,所以或,若Q到的距離為,則Q到左、右焦點(diǎn)的距離分別為、,又Q在C的右支上,所以,則,又,綜上,雙曲線的離心率的取值范圍是.故答案為:【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:若Q到的距離為,根據(jù)給定性質(zhì)有Q到左、右焦點(diǎn)的距離分別為、,再由雙曲線性質(zhì)及已知條件列不等式組求離心率范圍.16、【解析】利用橢圓的定義結(jié)合余弦定理可求得,再利用公式可求得該橢圓的離心率的值.【詳解】由橢圓的定義可得,由余弦定理可得,因?yàn)榈淖畲笾禐?,則,可得,因此,該橢圓的離心率為.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)根據(jù)題意,結(jié)合拋物線定義,可求得,即得拋物線方程;(2)由題意推出四邊形AOBC是菱形.,設(shè),根據(jù)拋物線的對稱性,可表示出B,C的坐標(biāo),從而利用向量的坐標(biāo)運(yùn)算,求得所設(shè)參數(shù)值,進(jìn)而求得答案.【小問1詳解】的準(zhǔn)線為:,作于R,根據(jù)拋物線的定義有,所以,因?yàn)樵诘膬?nèi)側(cè),所以當(dāng)P,Q,R三點(diǎn)共線時(shí),取得最小值,此時(shí),解得,所以的方程為.小問2詳解】因?yàn)锳B,OC互相垂直平分,所以四邊形AOBC是菱形.由,得軸,設(shè)點(diǎn),則,由拋物線的對稱性知,,,.由,得,解得,所以在菱形中,,邊上的高,所以菱形的面積.18、(1)(2)【解析】(1)設(shè),根據(jù)AB的中點(diǎn)坐標(biāo)可得,再利用點(diǎn)差法求得直線的斜率,即可求出直線方程;(2)易得直線過左焦點(diǎn),聯(lián)立直線和橢圓方程,消,利用韋達(dá)定理求得,再根據(jù)即可得出答案.【小問1詳解】解:設(shè),因?yàn)榈闹悬c(diǎn)坐標(biāo)為,所以,則,兩式相減得,即,即,所以直線l的斜率為1,所以直線l的方程為,即;【小問2詳解】在直線中,當(dāng)時(shí),,由橢圓:,得,則直線過點(diǎn),聯(lián)立,消整理得,則,.19、(1)(2)【解析】(1)聯(lián)立直線方程和雙曲線方程,利用弦長公式可求弦長.(2)根據(jù)圓過原點(diǎn)可得,設(shè),從而,聯(lián)立直線方程和雙曲線方程后利用韋達(dá)定理化簡前者可得所求的參數(shù)的值.【小問1詳解】當(dāng)時(shí),直線,設(shè),由可得,此時(shí),故.【小問2詳解】設(shè),因?yàn)橐詾橹睆降膱A經(jīng)過坐標(biāo)原點(diǎn),故,故,由可得,故且,故.而可化為即,因?yàn)?,所以,解得,結(jié)合其范圍可得.20、(1)公司從第3年開始獲利;(2)第9年時(shí)每臺充電樁年平均利潤最大3600元【解析】(1)判斷已知條件是等差數(shù)列,然后求解利潤的表達(dá)式,推出表達(dá)式求解n即可(2)利用基本不等式求解最大值即可【詳解】(1)每年的維修保養(yǎng)費(fèi)用是以1100為首項(xiàng),400為公差的等差數(shù)列,設(shè)第n年時(shí)累計(jì)利潤為f(n),f(n)=8100n-[1100+1500+…+(400n+700)]-16200=8100n-n(200n+900)-16200=-200n2+7200n-16200=-200(n2-36n+81),開始獲利即f(n)>0,∴-200(n2-36n+81)>0,即n2-36n+81<0,解得,所以公司從第3年開始獲利;(2)每臺充電樁年平均利潤為當(dāng)且僅當(dāng),即n=9時(shí),等號成立即在第9年時(shí)每臺充電樁年平均利潤最大3600元【點(diǎn)睛】本題考查數(shù)列與函數(shù)的實(shí)際應(yīng)用,基本不等式的應(yīng)用,考查轉(zhuǎn)化思想以及計(jì)算能力,是中檔題21、(1)(2)4【解析】(1)由已知設(shè)圓心,再由相切求圓半徑從而得解.(2)求弦長,再求點(diǎn)到直線的距離,進(jìn)而可得解.【小問1詳解】因?yàn)閳A心在直線上,所以設(shè)圓心,又圓與軸相切于點(diǎn),所以,即圓與軸相切,則圓的半徑,于是圓的方程為【小問2詳解】圓心到直線的距離,則,又到直線的距離為,所以.22、(1);(2)是定值,定值為4【解析】(1)根據(jù)正三角形性質(zhì)與面積可求得即可求得方程;(2)當(dāng)直線斜率不為0時(shí),設(shè)其方程代入橢圓
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 建筑行業(yè)管理
- 醫(yī)院火災(zāi)講解課件
- 中班自助游戲課件
- 中班安全健康教育說課稿
- 商品質(zhì)量管理合同(2篇)
- 2025年統(tǒng)編版小學(xué)道德與法治四年級下冊《多姿多彩的民間藝術(shù)》說課課件
- 2025年統(tǒng)編版小學(xué)道德與法治二年級下冊《安全地玩》說課課件
- 施工過程中防水保護(hù)協(xié)議
- 小學(xué)德育培訓(xùn)演講
- 施工現(xiàn)場材料采購及使用協(xié)議
- 掌握重點(diǎn)中職電子商務(wù)教師資格證試題與答案
- 醫(yī)院品管圈(QCC)活動(dòng)成果報(bào)告書-基于QFD 潤心服務(wù)改善 ICU 患者及家屬就醫(yī)體驗(yàn)
- JJG 693-2011可燃?xì)怏w檢測報(bào)警器
- 小學(xué)特色課程《口風(fēng)琴課程》校本教材
- Q∕GDW 12164-2021 變電站遠(yuǎn)程智能巡視系統(tǒng)技術(shù)規(guī)范
- 草莓栽培技術(shù)(課堂PPT)課件
- 機(jī)耕橋施工方案
- 貨車掛靠協(xié)議完整
- 鋼格構(gòu)柱組合式塔吊方案(專家認(rèn)證)
- 工程結(jié)算單(樣本)
- 康復(fù)治療師考試歷年真題附帶答案
評論
0/150
提交評論