




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆新疆石河子高級中學數學高三第一學期期末質量跟蹤監(jiān)視模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,在中,,是上一點,若,則實數的值為()A. B. C. D.2.某公園新購進盆錦紫蘇、盆虞美人、盆郁金香,盆盆栽,現將這盆盆栽擺成一排,要求郁金香不在兩邊,任兩盆錦紫蘇不相鄰的擺法共()種A. B. C. D.3.某幾何體的三視圖如圖所示,其俯視圖是由一個半圓與其直徑組成的圖形,則此幾何體的體積是()A. B. C. D.4.馬林●梅森是17世紀法國著名的數學家和修道士,也是當時歐洲科學界一位獨特的中心人物,梅森在歐幾里得、費馬等人研究的基礎上對2p﹣1作了大量的計算、驗證工作,人們?yōu)榱思o念梅森在數論方面的這一貢獻,將形如2P﹣1(其中p是素數)的素數,稱為梅森素數.若執(zhí)行如圖所示的程序框圖,則輸出的梅森素數的個數是()A.3 B.4 C.5 D.65.()A. B. C. D.6.已知正四面體的內切球體積為v,外接球的體積為V,則()A.4 B.8 C.9 D.277.已知函數是定義域為的偶函數,且滿足,當時,,則函數在區(qū)間上零點的個數為()A.9 B.10 C.18 D.208.已知雙曲線的右焦點為,若雙曲線的一條漸近線的傾斜角為,且點到該漸近線的距離為,則雙曲線的實軸的長為A. B.C. D.9.一個算法的程序框圖如圖所示,若該程序輸出的結果是,則判斷框中應填入的條件是()A. B. C. D.10.已知數列滿足,則()A. B. C. D.11.已知角的頂點與原點重合,始邊與軸的正半軸重合,終邊經過點,則()A. B. C. D.12.復數(i是虛數單位)在復平面內對應的點在()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空題:本題共4小題,每小題5分,共20分。13.有以下四個命題:①在中,的充要條件是;②函數在區(qū)間上存在零點的充要條件是;③對于函數,若,則必不是奇函數;④函數與的圖象關于直線對稱.其中正確命題的序號為______.14.若,則的最小值為________.15.,則f(f(2))的值為____________.16.設實數,若函數的最大值為,則實數的最大值為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)有最大值,且最大值大于.(1)求的取值范圍;(2)當時,有兩個零點,證明:.(參考數據:)18.(12分)已知中,內角所對邊分別是其中.(1)若角為銳角,且,求的值;(2)設,求的取值范圍.19.(12分)設函數.(Ⅰ)當時,求不等式的解集;(Ⅱ)若函數的圖象與直線所圍成的四邊形面積大于20,求的取值范圍.20.(12分)已知橢圓()經過點,離心率為,、、為橢圓上不同的三點,且滿足,為坐標原點.(1)若直線、的斜率都存在,求證:為定值;(2)求的取值范圍.21.(12分)如圖,在直三棱柱中,,,為的中點,點在線段上,且平面.(1)求證:;(2)求平面與平面所成二面角的正弦值.22.(10分)如圖,在四棱錐中,底面為菱形,底面,.(1)求證:平面;(2)若直線與平面所成的角為,求平面與平面所成銳二面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
由題意,可根據向量運算法則得到(1﹣m),從而由向量分解的唯一性得出關于t的方程,求出t的值.【詳解】由題意及圖,,又,,所以,∴(1﹣m),又t,所以,解得m,t,故選C.【點睛】本題考查平面向量基本定理,根據分解的唯一性得到所求參數的方程是解答本題的關鍵,本題屬于基礎題.2、B【解析】
間接法求解,兩盆錦紫蘇不相鄰,被另3盆隔開有,扣除郁金香在兩邊有,即可求出結論.【詳解】使用插空法,先排盆虞美人、盆郁金香有種,然后將盆錦紫蘇放入到4個位置中有種,根據分步乘法計數原理有,扣除郁金香在兩邊,排盆虞美人、盆郁金香有種,再將盆錦紫蘇放入到3個位置中有,根據分步計數原理有,所以共有種.故選:B.【點睛】本題考查排列應用問題、分步乘法計數原理,不相鄰問題插空法是解題的關鍵,屬于中檔題.3、C【解析】由三視圖可知,該幾何體是下部是半徑為2,高為1的圓柱的一半,上部為底面半徑為2,高為2的圓錐的一半,所以,半圓柱的體積為,上部半圓錐的體積為,所以該幾何體的體積為,故應選.4、C【解析】
模擬程序的運行即可求出答案.【詳解】解:模擬程序的運行,可得:p=1,S=1,輸出S的值為1,滿足條件p≤7,執(zhí)行循環(huán)體,p=3,S=7,輸出S的值為7,滿足條件p≤7,執(zhí)行循環(huán)體,p=5,S=31,輸出S的值為31,滿足條件p≤7,執(zhí)行循環(huán)體,p=7,S=127,輸出S的值為127,滿足條件p≤7,執(zhí)行循環(huán)體,p=9,S=511,輸出S的值為511,此時,不滿足條件p≤7,退出循環(huán),結束,故若執(zhí)行如圖所示的程序框圖,則輸出的梅森素數的個數是5,故選:C.【點睛】本題主要考查程序框圖,屬于基礎題.5、B【解析】
利用復數代數形式的乘除運算化簡得答案.【詳解】.故選B.【點睛】本題考查復數代數形式的乘除運算,考查了復數的基本概念,是基礎題.6、D【解析】
設正四面體的棱長為,取的中點為,連接,作正四面體的高為,首先求出正四面體的體積,再利用等體法求出內切球的半徑,在中,根據勾股定理求出外接球的半徑,利用球的體積公式即可求解.【詳解】設正四面體的棱長為,取的中點為,連接,作正四面體的高為,則,,,設內切球的半徑為,內切球的球心為,則,解得:;設外接球的半徑為,外接球的球心為,則或,,在中,由勾股定理得:,,解得,,故選:D【點睛】本題主要考查了多面體的內切球、外接球問題,考查了椎體的體積公式以及球的體積公式,需熟記幾何體的體積公式,屬于基礎題.7、B【解析】
由已知可得函數f(x)的周期與對稱軸,函數F(x)=f(x)在區(qū)間上零點的個數等價于函數f(x)與g(x)圖象在上交點的個數,作出函數f(x)與g(x)的圖象如圖,數形結合即可得到答案.【詳解】函數F(x)=f(x)在區(qū)間上零點的個數等價于函數f(x)與g(x)圖象在上交點的個數,由f(x)=f(2﹣x),得函數f(x)圖象關于x=1對稱,∵f(x)為偶函數,取x=x+2,可得f(x+2)=f(﹣x)=f(x),得函數周期為2.又∵當x∈[0,1]時,f(x)=x,且f(x)為偶函數,∴當x∈[﹣1,0]時,f(x)=﹣x,g(x),作出函數f(x)與g(x)的圖象如圖:由圖可知,兩函數圖象共10個交點,即函數F(x)=f(x)在區(qū)間上零點的個數為10.故選:B.【點睛】本題考查函數的零點與方程根的關系,考查數學轉化思想方法與數形結合的解題思想方法,屬于中檔題.8、B【解析】
雙曲線的漸近線方程為,由題可知.設點,則點到直線的距離為,解得,所以,解得,所以雙曲線的實軸的長為,故選B.9、D【解析】
首先判斷循環(huán)結構類型,得到判斷框內的語句性質,然后對循環(huán)體進行分析,找出循環(huán)規(guī)律,判斷輸出結果與循環(huán)次數以及的關系,最終得出選項.【詳解】經判斷此循環(huán)為“直到型”結構,判斷框為跳出循環(huán)的語句,第一次循環(huán):;第二次循環(huán):;第三次循環(huán):,此時退出循環(huán),根據判斷框內為跳出循環(huán)的語句,,故選D.【點睛】題主要考查程序框圖的循環(huán)結構流程圖,屬于中檔題.解決程序框圖問題時一定注意以下幾點:(1)不要混淆處理框和輸入框;(2)注意區(qū)分程序框圖是條件分支結構還是循環(huán)結構;(3)注意區(qū)分當型循環(huán)結構和直到型循環(huán)結構;(4)處理循環(huán)結構的問題時一定要正確控制循環(huán)次數;(5)要注意各個框的順序,(6)在給出程序框圖求解輸出結果的試題中只要按照程序框圖規(guī)定的運算方法逐次計算,直到達到輸出條件即可.10、C【解析】
利用的前項和求出數列的通項公式,可計算出,然后利用裂項法可求出的值.【詳解】.當時,;當時,由,可得,兩式相減,可得,故,因為也適合上式,所以.依題意,,故.故選:C.【點睛】本題考查利用求,同時也考查了裂項求和法,考查計算能力,屬于中等題.11、A【解析】
由已知可得,根據二倍角公式即可求解.【詳解】角的頂點與原點重合,始邊與軸的正半軸重合,終邊經過點,則,.故選:A.【點睛】本題考查三角函數定義、二倍角公式,考查計算求解能力,屬于基礎題.12、B【解析】
利用復數的四則運算以及幾何意義即可求解.【詳解】解:,則復數(i是虛數單位)在復平面內對應的點的坐標為:,位于第二象限.故選:B.【點睛】本題考查了復數的四則運算以及復數的幾何意義,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、①【解析】
由三角形的正弦定理和邊角關系可判斷①;由零點存在定理和二次函數的圖象可判斷②;由,結合奇函數的定義,可判斷③;由函數圖象對稱的特點可判斷④.【詳解】解:①在中,,故①正確;②函數在區(qū)間上存在零點,比如在存在零點,但是,故②錯誤;③對于函數,若,滿足,但可能為奇函數,故③錯誤;④函數與的圖象,可令,即,即有和的圖象關于直線對稱,即對稱,故④錯誤.故答案為:①.【點睛】本題主要考查函數的零點存在定理和對稱性、奇偶性的判斷,考查判斷能力和推理能力,屬于中檔題.14、【解析】
由基本不等式,可得到,然后利用,可得到最小值,要注意等號取得的條件?!驹斀狻坑深}意,,當且僅當時等號成立,所以,當且僅當時取等號,所以當時,取得最小值.【點睛】利用基本不等式求最值必須具備三個條件:①各項都是正數;②和(或積)為定值;③等號取得的條件。15、1【解析】
先求f(1),再根據f(1)值所在區(qū)間求f(f(1)).【詳解】由題意,f(1)=log3(11–1)=1,故f(f(1))=f(1)=1×e1–1=1,故答案為:1.【點睛】本題考查分段函數求值,考查對應性以及基本求解能力.16、【解析】
根據,則當時,,即.當時,顯然成立;當時,由,轉化為,令,用導數法求其最大值即可.【詳解】因為,又當時,,即.當時,顯然成立;當時,由等價于,令,,當時,,單調遞增,當時,,單調遞減,,則,又,得,因此的最大值為.故答案為:【點睛】本題主要考查導數在函數中的應用,還考查了轉化化歸的思想和運算求解的能力,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)證明見解析.【解析】
(1)求出函數的定義域為,,分和兩種情況討論,分析函數的單調性,求出函數的最大值,即可得出關于實數的不等式,進而可求得實數的取值范圍;(2)利用導數分析出函數在上遞增,在上遞減,可得出,由,構造函數,證明出,進而得出,再由函數在區(qū)間上的單調性可證得結論.【詳解】(1)函數的定義域為,且.當時,對任意的,,此時函數在上為增函數,函數為最大值;當時,令,得.當時,,此時函數單調遞增;當時,,此時函數單調遞減.所以,函數在處取得極大值,亦即最大值,即,解得.綜上所述,實數的取值范圍是;(2)當時,,定義域為,,當時,;當時,.所以,函數的單調遞增區(qū)間為,單調遞減區(qū)間為.由于函數有兩個零點、且,,,構造函數,其中,,令,,當時,,所以,函數在區(qū)間上單調遞減,則,則.所以,函數在區(qū)間上單調遞減,,,即,即,,且,而函數在上為減函數,所以,,因此,.【點睛】本題考查利用函數的最值求參數,同時也考查了利用導數證明函數不等式,利用所證不等式的結構構造新函數是解答的關鍵,考查推理能力與計算能力,屬于難題.18、(1);(2).【解析】
(1)由正弦定理直接可求,然后運用兩角和的正弦公式算出;(2)化簡,由余弦定理得,利用基本不等式求出,確定角范圍,進而求出的取值范圍.【詳解】(1)由正弦定理,得:,且為銳角(2)【點睛】本題主要考查了正余弦定理的應用,基本不等式的應用,三角函數的值域等,考查了學生運算求解能力.19、(1)(2)【解析】
(Ⅰ)當時,不等式為.若,則,解得或,結合得或.若,則,不等式恒成立,結合得.綜上所述,不等式解集為.(Ⅱ)則的圖象與直線所圍成的四邊形為梯形,令,得,令,得,則梯形上底為,下底為11,高為..化簡得,解得,結合,得的取值范圍為.點睛:含絕對值不等式的解法有兩個基本方法,一是運用零點分區(qū)間討論,二是利用絕對值的幾何意義求解.法一是運用分類討論思想,法二是運用數形結合思想,將絕對值不等式與函數以及不等式恒成立交匯、滲透,解題時強化函數、數形結合與轉化化歸思想方法的靈活應用,這是命題的新動向.20、(1)證明見解析;(2).【解析】
(1)首先根據題中條件求出橢圓方程,設、、點坐標,根據利用坐標表示出即可得證;(2)設直線方程,再與橢圓方程聯(lián)立利用韋達定理表示出,即可求出范圍.【詳解】(1)依題有,所以橢圓方程為.設,,,由為的重心,;又因為,,,,(2)當的斜率不存在時:,,,代入橢圓得,,,當的斜率存在時:設直線為,這里,由,,根據韋達定理有,,,故,代入橢圓方程有,又因為,綜上,的范圍是.【點睛】本題主要考查了橢圓方程的求解,三角形重心的坐標關系,直線與橢圓所交弦長,屬于一般
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 個人增資入股合同樣本
- 典雅新中式花園施工方案
- 企業(yè)和工人合同標準文本
- 中俄對照木材合同標準文本
- 2025品牌加盟店合同范本
- 2025股權投資的合同范本
- 上海醫(yī)院合同標準文本
- 公路包工安全合同標準文本
- 農村建房子合同樣本
- 2025標準金融機構個人信用貸款合同范本
- 疫情統(tǒng)計學智慧樹知到答案2024年浙江大學
- 幼兒園一等獎公開課:大班繪本《愛書的孩子》課件
- 國家八年級數學質量測試題(六套)
- MOOC 宋詞經典-浙江大學 中國大學慕課答案
- 自密實混凝土課件(PPT 72頁)
- 旅游投資簡要概述PPT通用課件
- 空氣軸承技術培訓教程
- 金華職業(yè)技術學院提前招生綜合測評試卷及答案
- 鄉(xiāng)村旅游經營管理的八種模式知識講解
- 新生兒聽力篩查PPT幻燈片課件
- 雷諾護坡專項施工方案
評論
0/150
提交評論