浙江省五校聯(lián)考2025屆數(shù)學(xué)高二上期末質(zhì)量檢測(cè)試題含解析_第1頁(yè)
浙江省五校聯(lián)考2025屆數(shù)學(xué)高二上期末質(zhì)量檢測(cè)試題含解析_第2頁(yè)
浙江省五校聯(lián)考2025屆數(shù)學(xué)高二上期末質(zhì)量檢測(cè)試題含解析_第3頁(yè)
浙江省五校聯(lián)考2025屆數(shù)學(xué)高二上期末質(zhì)量檢測(cè)試題含解析_第4頁(yè)
浙江省五校聯(lián)考2025屆數(shù)學(xué)高二上期末質(zhì)量檢測(cè)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩14頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

浙江省五校聯(lián)考2025屆數(shù)學(xué)高二上期末質(zhì)量檢測(cè)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若點(diǎn)是函數(shù)圖象上的動(dòng)點(diǎn)(其中的自然對(duì)數(shù)的底數(shù)),則到直線的距離最小值為()A. B.C. D.2.與向量平行,且經(jīng)過(guò)點(diǎn)的直線方程為()A. B.C. D.3.設(shè)拋物線上一點(diǎn)到軸的距離是4,則點(diǎn)到該拋物線焦點(diǎn)的距離是()A.6 B.8C.9 D.104.過(guò)拋物線的焦點(diǎn)的直線交拋物線于不同的兩點(diǎn),則的值為A.2 B.1C. D.45.下列關(guān)系中,正確的是()A. B.C. D.6.拋物線的焦點(diǎn)坐標(biāo)是()A. B.C. D.7.曲線與曲線的()A.實(shí)軸長(zhǎng)相等 B.虛軸長(zhǎng)相等C.焦距相等 D.漸進(jìn)線相同8.已知拋物線的焦點(diǎn)為,過(guò)點(diǎn)且傾斜角為銳角的直線與交于、兩點(diǎn),過(guò)線段的中點(diǎn)且垂直于的直線與的準(zhǔn)線交于點(diǎn),若,則的斜率為()A. B.C. D.9.已知向量,,則以下說(shuō)法不正確的是()A. B.C. D.10.圓與圓的位置關(guān)系是()A.相交 B.相離C.內(nèi)切 D.外切11.已知雙曲線左右焦點(diǎn)為,,過(guò)的直線與雙曲線的右支交于P,Q兩點(diǎn),且,若為以Q為頂角的等腰三角形,則雙曲線的離心率為()A. B.C. D.12.在平面直角坐標(biāo)系中,橢圓的左、右焦點(diǎn)分別為,,過(guò)且垂直于軸的直線與交于,兩點(diǎn),與軸交于點(diǎn),,則的離心率為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù)有三個(gè)零點(diǎn),則正實(shí)數(shù)a的取值范圍為_(kāi)________14.如圖,某海輪以的速度航行,若海輪在點(diǎn)測(cè)得海面上油井在南偏東,向北航行后到達(dá)點(diǎn),測(cè)得油井在南偏東,海輪改為沿北偏東的航向再行駛到達(dá)點(diǎn),則,間的距離是________15.設(shè),滿足約束條件,則的最大值是_________.16.已知直線與雙曲線交于兩點(diǎn),則該雙曲線的離心率的取值范圍是______三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知?jiǎng)訄A過(guò)定點(diǎn),且與直線相切,圓心的軌跡為(1)求動(dòng)點(diǎn)的軌跡方程;(2)已知直線交軌跡于兩點(diǎn),,且中點(diǎn)的縱坐標(biāo)為,則的最大值為多少?18.(12分)已知p:關(guān)于x的方程至多有一個(gè)實(shí)數(shù)解,.(1)若命題p為真命題,求實(shí)數(shù)a的取值范圍;(2)若p是q的充分不必要條件,求實(shí)數(shù)m的取值范圍.19.(12分)在平面直角坐標(biāo)系中,過(guò)點(diǎn)的直線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為(1)求直線的普通方程和曲線的直角坐標(biāo)方程;(2)設(shè)曲線與直線交于,兩點(diǎn),求線段的中點(diǎn)的直角坐標(biāo)及的值20.(12分)如圖,在直角梯形中,.直角梯形通過(guò)直角梯形以直線為軸旋轉(zhuǎn)得到,且使得平面平面.M為線段的中點(diǎn),P為線段上的動(dòng)點(diǎn)(1)求證:;(2)當(dāng)點(diǎn)P滿足時(shí),求證:直線平面;(3)是否存在點(diǎn)P,使直線與平面所成角的正弦值為?若存在,試確定P點(diǎn)的位置;若不存在,請(qǐng)說(shuō)明理由21.(12分)已知函數(shù)的兩個(gè)極值點(diǎn)之差的絕對(duì)值為.(1)求的值;(2)若過(guò)原點(diǎn)的直線與曲線在點(diǎn)處相切,求點(diǎn)的坐標(biāo).22.(10分)如圖,在三棱錐中,側(cè)面PAB是邊長(zhǎng)為4的正三角形且與底面ABC垂直,點(diǎn)D,E,F(xiàn),H分別是棱PA,AB,BC,PC的中點(diǎn)(1)若點(diǎn)G在棱BC上,且BG=3GC,求證:平面∥平面DHG;(2)若AC=2,,求二面角的余弦值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】設(shè),,設(shè)與平行且與相切的直線與切于,由導(dǎo)數(shù)的幾何意義可求出點(diǎn)的坐標(biāo),則到直線的距離最小值為點(diǎn)到直線的距離,再求解即可.【詳解】解:設(shè),,設(shè)與平行且與相切的直線與切于所以所以則到直線的距離為,即到直線的距離最小值為,故選:A2、A【解析】利用點(diǎn)斜式求得直線方程.【詳解】依題意可知,所求直線的斜率為,所以所求直線方程為,即.故選:A3、A【解析】計(jì)算拋物線的準(zhǔn)線,根據(jù)距離結(jié)合拋物線的定義得到答案.【詳解】拋物線的焦點(diǎn)為,準(zhǔn)線方程為,到軸的距離是4,故到準(zhǔn)線的距離是,故點(diǎn)到該拋物線焦點(diǎn)的距離是.故選:A.4、D【解析】本題首先可以通過(guò)直線交拋物線于不同的兩點(diǎn)確定直線的斜率存在,然后設(shè)出直線方程并與拋物線方程聯(lián)立,求出以及的值,然后通過(guò)拋物線的定義將化簡(jiǎn),最后得出結(jié)果【詳解】因?yàn)橹本€交拋物線于不同的兩點(diǎn),所以直線的斜率存在,設(shè)過(guò)拋物線的焦點(diǎn)的直線方程為,由可得,,因?yàn)閽佄锞€的準(zhǔn)線方程為,所以根據(jù)拋物線的定義可知,,所以,綜上所述,故選D【點(diǎn)睛】本題考查了拋物線的相關(guān)性質(zhì),主要考查了拋物線的定義、過(guò)拋物線焦點(diǎn)的直線與拋物線相交的相關(guān)性質(zhì),考查了計(jì)算能力,是中檔題5、B【解析】根據(jù)對(duì)數(shù)函數(shù)的性質(zhì)判斷A,根據(jù)指數(shù)函數(shù)的性質(zhì)判斷B,根據(jù)正弦函數(shù)的性質(zhì)及誘導(dǎo)公式判斷C,根據(jù)余弦函數(shù)的性質(zhì)及誘導(dǎo)公式判斷D;【詳解】解:對(duì)于A:因?yàn)椋?,,故A錯(cuò)誤;對(duì)于B:因?yàn)樵诙x域上單調(diào)遞減,因?yàn)?,所以,又,,因?yàn)樵谏蠁握{(diào)遞增,所以,所以,所以,故B正確;對(duì)于C:因?yàn)樵谏蠁握{(diào)遞減,因?yàn)椋?,又,所以,故C錯(cuò)誤;對(duì)于D:因?yàn)樵谏蠁握{(diào)遞減,又,所以,又,所以,故D錯(cuò)誤;故選:B6、C【解析】化為標(biāo)準(zhǔn)方程,利用焦點(diǎn)坐標(biāo)公式求解.【詳解】拋物線的標(biāo)準(zhǔn)方程為,所以拋物線的焦點(diǎn)在軸上,且,所以,所以拋物線的焦點(diǎn)坐標(biāo)為.故選:C7、D【解析】將曲線化為標(biāo)準(zhǔn)方程后即可求解.【詳解】化為標(biāo)準(zhǔn)方程為,由于,則兩曲線實(shí)軸長(zhǎng)、虛軸長(zhǎng)、焦距均不相等,而漸近線方程同為.故選:8、C【解析】設(shè)直線的方程為,其中,設(shè)點(diǎn)、、,將直線的方程與拋物線的方程聯(lián)立,列出韋達(dá)定理,求出、,根據(jù)條件可求得的值,即可得出直線的斜率.【詳解】拋物線的焦點(diǎn)為,設(shè)直線的方程為,其中,設(shè)點(diǎn)、、,聯(lián)立可得,,,所以,,,,直線的斜率為,則直線的斜率為,所以,,因?yàn)椋瑒t,因?yàn)?,解得,因此,直線的斜率為.故選:C.9、C【解析】可根據(jù)已知的和的坐標(biāo),通過(guò)計(jì)算向量數(shù)量積、向量的模,即可做出判斷.【詳解】因?yàn)橄蛄?,,所以,故,所以選項(xiàng)A正確;,,所以,故選項(xiàng)B正確;,所以,故選項(xiàng)C錯(cuò)誤;,所以,,故,所以選項(xiàng)D正確.故選:C.10、A【解析】求出兩圓的圓心及半徑,求出圓心距,從而可得出結(jié)論.【詳解】解:圓的圓心為,半徑為,圓圓心為,半徑為,則兩圓圓心距,因?yàn)?,所以兩圓相交.故選:A.11、C【解析】由雙曲線的定義得出中各線段長(zhǎng)(用表示),然后通過(guò)余弦定理得出的關(guān)系式,變形后可得離心率【詳解】由題意,又,所以,從而,,,中,,中.,所以,,所以,故選:C12、B【解析】由題意結(jié)合幾何性質(zhì)可得為等腰三角形,且,所以,求出的長(zhǎng),結(jié)合橢圓的定義可得答案.【詳解】如圖,由題意軸,軸,則又為的中點(diǎn),則為的中點(diǎn),又,則為等腰三角形,且,所以將代入橢圓方程得,,即所以,則由橢圓的定義可得,即則橢圓的離心率故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】求導(dǎo)易得函數(shù)有兩個(gè)極值點(diǎn)和,根據(jù)題意,由求解.【詳解】由,可得函數(shù)有兩個(gè)極值點(diǎn)和,,,若函數(shù)有三個(gè)零點(diǎn),必有解得或故答案為:14、【解析】根據(jù)條件先由正弦定理求出的長(zhǎng),得出,求出的長(zhǎng),由勾股定理可得答案.【詳解】海輪向北航行后到達(dá)點(diǎn),則由題意,在中,又則,由正弦定理可得:,即在中,,所以故答案為:15、5【解析】由題可知表示點(diǎn)與點(diǎn)連線的斜率,再畫出可行域結(jié)合圖像知知.【詳解】x,y滿足約束條件,滿足的可行域如圖:則的幾何意義是可行域內(nèi)的點(diǎn)與(﹣3,﹣2)連線的斜率,通過(guò)分析圖像得到當(dāng)經(jīng)過(guò)A時(shí),目標(biāo)函數(shù)取得最大值由可得A(﹣2,3),則的最大值是:故答案為5【點(diǎn)睛】(1)在平面直角坐標(biāo)系內(nèi)作出可行域(2)考慮目標(biāo)函數(shù)的幾何意義,將目標(biāo)函數(shù)進(jìn)行變形.常見(jiàn)的類型有截距型(型)、斜率型(型)和距離型(型)(3)確定最優(yōu)解:根據(jù)目標(biāo)函數(shù)的類型,并結(jié)合可行域確定最優(yōu)解(4)求最值:將最優(yōu)解代入目標(biāo)函數(shù)即可求出最大值或最小值16、【解析】分析可知,由可求得結(jié)果.【詳解】雙曲線的漸近線方程為,由題意可知,.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)【解析】(1)利用拋物線的定義直接可得軌跡方程;(2)設(shè)直線方程,聯(lián)立方程組,結(jié)合根與系數(shù)關(guān)系可得,再根據(jù)二次函數(shù)的性質(zhì)可得最值.【小問(wèn)1詳解】由題設(shè)點(diǎn)到點(diǎn)的距離等于它到的距離,點(diǎn)的軌跡是以為焦點(diǎn),為準(zhǔn)線的拋物線,所求軌跡的方程為;【小問(wèn)2詳解】由題意易知直線的斜率存在,設(shè)中點(diǎn)為,直線的方程為,聯(lián)立直線與拋物線,得,,且,,又中點(diǎn)為,即,,故恒成立,,,所以,當(dāng)時(shí),取最大值為.【點(diǎn)睛】(1)直線與拋物線的位置關(guān)系和直線與橢圓、雙曲線的位置關(guān)系類似,一般要用到根與系數(shù)的關(guān)系;(2)有關(guān)直線與拋物線的弦長(zhǎng)問(wèn)題,要注意直線是否過(guò)拋物線的焦點(diǎn),若過(guò)拋物線的焦點(diǎn),可直接使用公式|AB|=x1+x2+p,若不過(guò)焦點(diǎn),則必須用一般弦長(zhǎng)公式18、(1)(2)【解析】(1)根據(jù)命題p為真命題,可得,解之即可得解;(2)若p是q的充分不必要條件,則,列出不等式組,解之即可得出答案.【小問(wèn)1詳解】解:命題p:關(guān)于x的方程至多有一個(gè)實(shí)數(shù)解,∴,解得,∴實(shí)數(shù)a的取值范圍是;【小問(wèn)2詳解】解:命題,∵p是q的充分不必要條件,∴,∴,且兩式等號(hào)不能同時(shí)取得,解得,∴實(shí)數(shù)m的取值范圍是.19、(1)直線的普通方程為,曲線的直角坐標(biāo)方程.(2)【解析】(1)直接利用轉(zhuǎn)換關(guān)系,在參數(shù)方程、極坐標(biāo)方程和直角坐標(biāo)方程之間進(jìn)行轉(zhuǎn)換;(2)利用中點(diǎn)坐標(biāo)公式和一元二次方程根和系數(shù)關(guān)系式的應(yīng)用求出結(jié)果【小問(wèn)1詳解】解:過(guò)點(diǎn)的直線的參數(shù)方程為為參數(shù)),轉(zhuǎn)換為普通方程為,即直線的普通方程為;曲線的極坐標(biāo)方程為,即,即,根據(jù),轉(zhuǎn)換為直角坐標(biāo)方程為,即曲線的直角坐標(biāo)方程【小問(wèn)2詳解】解:把代入,整理得,所以,設(shè),,;故,代入,解得,故中點(diǎn)坐標(biāo)為;把直線的參數(shù)方程為為參數(shù))代入,設(shè)和對(duì)應(yīng)的參數(shù)為和,得到,整理得,所以20、(1)見(jiàn)解析(2)見(jiàn)解析(3)存在點(diǎn)P,【解析】(1)建立空間坐標(biāo)系求兩直線的方向向量,根據(jù)數(shù)量積為0可證的結(jié)論;(2)求得直線的方向向量和面的法向量,證得兩向量垂直即可;(3)求直線的方向向量和面的法向量的夾角即可.【小問(wèn)1詳解】由已知可得,,,兩兩垂直,以A為原點(diǎn),,,所在直線為軸,軸,軸建立如圖空間直角坐標(biāo)系,因?yàn)?,所以,,,,,,,,,∴,,∴,,即,,∴平面又∵平面,∴【小?wèn)2詳解】設(shè)點(diǎn)坐標(biāo)為,則,∵,∴,,,解得:,,,即設(shè)平面的一個(gè)法向量,∵,,∴,即,令,則,,得又,∴∴直線平面【小問(wèn)3詳解】設(shè),則,設(shè)的一個(gè)法向量為∵,,∴,解,令,則,,得設(shè)與平面所成角為,則.解得:或(舍).故存在點(diǎn)P,,即點(diǎn)P為距的第一個(gè)5等分點(diǎn)21、(1);(2).【解析】(1)求,設(shè)的兩根分別為,,由韋達(dá)定理可得:,,由題意知,進(jìn)而可得的值;再檢驗(yàn)所求的的值是否符合題意即可;(2)設(shè),則,由列關(guān)于的方程,即可求得的值,進(jìn)而可得的值,即可得點(diǎn)的坐標(biāo).【詳解】由可得:設(shè)的兩根分別為,,則,,由題意可知:,即,所以解得:,當(dāng)時(shí),,由可得或,由可得,所以在單調(diào)遞增,在單調(diào)遞減,在單調(diào)遞增,所以為極大值點(diǎn),為極小值點(diǎn),滿足兩個(gè)極值點(diǎn)之差的絕對(duì)值為,符合題意,所以.(2)由(1)知,,設(shè),則,由題意可得:,即,整理可得:,解得:或,因?yàn)榧礊樽鴺?biāo)原點(diǎn),不符合題意,所以,則,所以.22、(1)證明見(jiàn)解析;(2).【解析】(1)由中位線的性質(zhì)可得、、,再由線面平行的判定可證平面PEF、平面PEF,最后根據(jù)面面平行的判定證明結(jié)論.(2)應(yīng)用勾股定理、等邊三角形的性質(zhì)、面面和線面垂直的性質(zhì)可證、、兩兩垂直,構(gòu)建空間直角坐標(biāo)系,求面BPC、面PCA的法向量,再應(yīng)用空間向量夾角的坐標(biāo)表示求二面角的余弦值.【小問(wèn)1詳解】因?yàn)镈,H分別是PA,PC的中點(diǎn),所以因?yàn)镋,F(xiàn)分別是AB,BC的中點(diǎn),所以,綜上,,又平面PEF,平面PEF,所以平面PEF由題意,

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論