福建省福州市平潭縣新世紀學(xué)校2025屆高二數(shù)學(xué)第一學(xué)期期末經(jīng)典試題含解析_第1頁
福建省福州市平潭縣新世紀學(xué)校2025屆高二數(shù)學(xué)第一學(xué)期期末經(jīng)典試題含解析_第2頁
福建省福州市平潭縣新世紀學(xué)校2025屆高二數(shù)學(xué)第一學(xué)期期末經(jīng)典試題含解析_第3頁
福建省福州市平潭縣新世紀學(xué)校2025屆高二數(shù)學(xué)第一學(xué)期期末經(jīng)典試題含解析_第4頁
福建省福州市平潭縣新世紀學(xué)校2025屆高二數(shù)學(xué)第一學(xué)期期末經(jīng)典試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

福建省福州市平潭縣新世紀學(xué)校2025屆高二數(shù)學(xué)第一學(xué)期期末經(jīng)典試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在等比數(shù)列中,若是函數(shù)的極值點,則的值是()A. B.C. D.2.命題“?x∈[1,2],x2-a≤0”為真命題的一個充分不必要條件是()A.a≥4 B.a≤4C.a≥5 D.a≤53.設(shè)是區(qū)間上的連續(xù)函數(shù),且在內(nèi)可導(dǎo),則下列結(jié)論中正確的是()A.的極值點一定是最值點B.的最值點一定是極值點C.在區(qū)間上可能沒有極值點D.在區(qū)間上可能沒有最值點4.已知橢圓的離心率為,直線與橢圓交于兩點,為坐標原點,且,則橢圓的方程為A B.C. D.5.在平面直角坐標系中,拋物線上點到焦點的距離為3,則焦點到準線的距離為()A. B.C.1 D.6.已知方程表示雙曲線,則實數(shù)的取值范圍是()A.或 B.C. D.7.意大利數(shù)學(xué)家斐波那契的《算經(jīng)》中記載了一個有趣的數(shù)列:1,1,2,3,5,8,13,21,34,55,89,144,……,這就是著名的斐波那契數(shù)列,該數(shù)列的前2022項中有()個奇數(shù)A.1012 B.1346C.1348 D.13508.已知數(shù)列為遞增等比數(shù)列,,則數(shù)列的前2019項和()A. B.C. D.9.已知圓C過點,圓心在x軸上,則圓C的方程為()A. B.C. D.10.阿基米德不僅是著名的物理學(xué)家,也是著名的數(shù)學(xué)家,他利用“逼近法”得到橢圓的面積公式,設(shè)橢圓的長半軸長、短半軸長分別為,則橢圓的面積公式為,若橢圓的離心率為,面積為,則橢圓的標準方程為()A.或 B.或C.或 D.或11.在正方體的12條棱中任選3條,其中任意2條所在的直線都是異面直線的概率為()A. B.C. D.12.已知數(shù)列滿足,,令,若對于任意不等式恒成立,則實數(shù)t的取值范圍為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知點F是拋物線的焦點,點,點P為拋物線上的任意一點,則的最小值為_________.14.已知是首項為,公差為1的等差數(shù)列,數(shù)列滿足,若對任意的,都有成立,則實數(shù)的取值范圍是________15.已知一個樣本數(shù)據(jù)為3,3,5,5,5,7,7,現(xiàn)在新加入一個3,一個5,一個7得到一個新樣本,則與原樣本數(shù)據(jù)相比,新樣本數(shù)據(jù)平均數(shù)______,方差______.(“變大”、“變小”、“不變”)16.雙曲線的漸近線方程是____________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,四棱臺的底面為正方形,面,(1)求證:平面;(2)若平面平面,求直線m與平面所成角的正弦值18.(12分)如圖,在多面體ABCEF中,和均為等邊三角形,D是AC的中點,(1)證明:(2)若平面平面ACE,求二面角的余弦值.19.(12分)記為數(shù)列的前項和,且(1)求的通項公式;(2)設(shè),求數(shù)列的前項和20.(12分)已知的內(nèi)角A,B,C所對的邊分別為a,b,c,且(1)求;(2)若,求的面積的最大值21.(12分)如圖,在三棱錐中,底面,.點,,分別為棱,,的中點,是線段的中點,,(1)求證:平面;(2)求二面角的正弦值;(3)已知點在棱上,且直線與直線所成角的余弦值為,求線段的長22.(10分)已知函數(shù)(1)若,求函數(shù)的單調(diào)區(qū)間;(2)若函數(shù)有兩個不相等的零點,證明:

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】根據(jù)導(dǎo)數(shù)的性質(zhì)求出函數(shù)的極值點,再根據(jù)等比數(shù)列的性質(zhì)進行求解即可.【詳解】,當(dāng)時,單調(diào)遞增,當(dāng)時,單調(diào)遞減,當(dāng)時,單調(diào)遞增,所以是函數(shù)的極值點,因為,且所以,故選:B2、C【解析】先要找出命題為真命題的充要條件,從集合的角度充分不必要條件應(yīng)為的真子集,由選擇項不難得出答案【詳解】命題“?x∈[1,2],x2-a≤0”為真命題,可化為?x∈[1,2],恒成立即只需,即命題“?x∈[1,2],x2-a≤0”為真命題的的充要條件為,而要找的一個充分不必要條件即為集合的真子集,由選擇項可知C符合題意.故選:C3、C【解析】根據(jù)連續(xù)函數(shù)的極值和最值的關(guān)系即可判斷【詳解】根據(jù)函數(shù)的極值與最值的概念知,的極值點不一定是最值點,的最值點不一定是極值點.可能是區(qū)間的端點,連續(xù)可導(dǎo)函數(shù)在閉區(qū)間上一定有最值,所以選項A,B,D都不正確,若函數(shù)在區(qū)間上單調(diào),則函數(shù)在區(qū)間上沒有極值點,所以C正確故選:C.【點睛】本題主要考查函數(shù)的極值與最值的概念辨析,屬于容易題4、D【解析】根據(jù)等腰直角三角形的性質(zhì)可得,將代入橢圓方程,結(jié)合離心率為以及性質(zhì)列方程組求得與的值,從而可得結(jié)果.【詳解】設(shè)直線與橢圓在第一象限的交點為,因為,所以,即,由可得,,故所求橢圓的方程為.故選D.【點睛】本題主要考查橢圓的標準方程與性質(zhì),以及橢圓離心率的應(yīng)用,意在考查對基礎(chǔ)知識掌握的熟練程度,屬于中檔題.5、D【解析】根據(jù)給定條件求出拋物線C的焦點、準線,再利用拋物線的定義求出a值計算作答.【詳解】拋物線的焦點,準線,依題意,由拋物線定義得,解得,所以拋物線焦點到準線的距離為.故選:D6、A【解析】根據(jù)雙曲線標準方程的性質(zhì),列出關(guān)于不等式,求解即可得到答案【詳解】由雙曲線的性質(zhì):,解的或,故選:A7、C【解析】由斐波那契數(shù)列的前幾項分析該數(shù)列的項的奇偶規(guī)律,由此確定該數(shù)列的前2022項中的奇數(shù)的個數(shù).【詳解】由已知可得為奇數(shù),為奇數(shù),為偶數(shù),因為,所以為奇數(shù),為奇數(shù),為偶數(shù),…………所以為奇數(shù),為奇數(shù),為偶數(shù),又故該數(shù)列的前2022項中共有1348個奇數(shù),故選:C.8、C【解析】根據(jù)數(shù)列為遞增的等比數(shù)列,,利用“”法求得,再代入等比數(shù)列的前n項和公式求解.【詳解】因為數(shù)列為遞增等比數(shù)列,所以,解得:,所以.故選:C【點睛】本題主要考查等比數(shù)列的基本運算,還考查了運算求解的能力,屬于基礎(chǔ)題.9、C【解析】設(shè)出圓的標準方程,將已知點的坐標代入,解方程組即可.【詳解】設(shè)圓的標準方程為,將坐標代入得:,解得,故圓的方程為,故選:C.10、B【解析】根據(jù)題意列出的關(guān)系式,即可求得,再分焦點在軸與軸兩種情況寫出標準方程.【詳解】根據(jù)題意,可得,所以橢圓的標準方程為或.故選:B11、B【解析】根據(jù)正方體的性質(zhì)確定3條棱兩兩互為異面直線的情況數(shù),結(jié)合組合數(shù)及古典概率的求法,求任選3條其中任意2條所在的直線是異面直線的概率.【詳解】如下圖,正方體中如:中任意2條所在的直線都是異面直線,∴這樣的3條直線共有8種情況,∴任選3條,其中任意2條所在的直線都是異面直線的概率為.故選:B.12、D【解析】根據(jù)遞推關(guān)系,利用裂項相消法,累加法求出,可得,原不等式轉(zhuǎn)化為恒成立求解即可.【詳解】,,,由累加法可得,又,,符合上式,,,對于任意不等式恒成立,則,解得.故選:D二、填空題:本題共4小題,每小題5分,共20分。13、3【解析】根據(jù)拋物線的定義可求最小值.【詳解】如圖,過作拋物線準線的垂線,垂足為,連接,則,當(dāng)且僅當(dāng)共線時等號成立,故的最小值為3,故答案為:3.14、【解析】先求得,再得出,對于任意的,都有成立,說明是中的最小項【詳解】由題意,∴,易知函數(shù)在和上都是減函數(shù),且時,,即,時,,,由題意對于任意的,都有成立,則是最小項,∴,解得,故答案為:15、①.不變②.變大【解析】通過計算平均數(shù)和方差來確定正確答案.【詳解】原樣本平均數(shù)為,原樣本方差為,新樣本平均數(shù)為,新樣本方差為.所以平均數(shù)不變,方差變大.故答案為:不變;變大16、【解析】由雙曲線的方程可知,,即可直接寫出其漸近線的方程.【詳解】由雙曲線的方程為,可知,;則雙曲線的漸近線方程為.故答案:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2).【解析】(1):連結(jié)交交于點O,連結(jié),,通過四棱臺的性質(zhì)以及給定長度證明,從而證出,利用線面平行的判定定理可證明面;(2)利用線面平行的性質(zhì)定理以及基本事實可證明,即求與平面所成角的正弦值;通過條件以及面面垂直的判定定理可證明面面,則為與平面所成角,利用余弦定理求出余弦值,即可求出正弦值.【詳解】(1)證明:連結(jié)交交于點O,連結(jié),,由多面體為四棱臺可知四點共面,且面面,面面,面面,∴,∵和均為正方形,,∴,所以為平行四邊形,∴,面,面,∴平面(2)∵面,平面,平面,∴,又∵,∴∴求直線m與平面所成角可轉(zhuǎn)化為求與平面所成角,∵和均為正方形,,且,∴,,∴,又∵面,∴∴面,∴面面,由面面,設(shè)O在面的投影為M,則,∴為與平面所成角,由,可得,又∵,∴∴,直線m與平面所成角的正弦值為.【點睛】思路點睛:(1)找兩個平面的交線,可通過兩個平面的交點找到,也可利用線面平行的性質(zhì)找和交線的平行直線;(2)求直線和平面所成角,過直線上一點做平面的垂線,則垂足和斜足連線與直線所成角即為直線和平面所成角.18、(1)證明見解析(2)【解析】(1)根據(jù)等腰三角形三線合一的性質(zhì)得到、,即可得到平面,再根據(jù),即可得證;(2)由面面垂直的性質(zhì)得到平面,建立如圖所示空間直角坐標系,設(shè),即可得到點,,的坐標,最后利用空間向量法求出二面角的余弦值;小問1詳解】證明:連接DE因為,且D為AC的中點,所以因為,且D為AC的中點,所以因為平面BDE,平面BDE,且,所以平面因為,所以平面BDE,所以【小問2詳解】解:由(1)可知因為平面平面,平面平面,平面,所以平面,所以DC,DB,DE兩兩垂直以D為原點,分別以,,的方向為x,y,z軸的正方向,建立如圖所示的空間直角坐標系設(shè).則,,.從而,設(shè)平面BCE的法向量為,則令,得平面ABC的一個法向量為設(shè)二面角為,由圖可知為銳角,則19、(1)(2)【解析】(1)利用,再結(jié)合等比數(shù)列的概念,即可求出結(jié)果;(2)由(1)可知數(shù)列是以為首項,公差為的等差數(shù)列,根據(jù)等差數(shù)列的前項和公式,即可求出結(jié)果.【小問1詳解】解:當(dāng)時,,解得;當(dāng)且時,所以所以是以為首項,為公比的等比數(shù)列所以;【小問2詳解】解:由(1)可知,所以,又,所以數(shù)列是以為首項,公差為的等差數(shù)列,所以數(shù)列的前項和.20、(1)(2)【解析】(1)由正弦定理將邊化為角,結(jié)合三角函數(shù)的兩角和的正弦公式,可求得答案;(2)由余弦定理結(jié)合基本不等式可求得,再利用三角形面積公式求得答案.【小問1詳解】由正弦定理及,得,∵∴,∵,∴【小問2詳解】由余弦定理,∴,即,當(dāng)且僅當(dāng)時取等號,∴,當(dāng)且僅當(dāng)時等號成立,∴的面積的最大值為21、(1)證明見解析;(2);(3)或【解析】本小題主要考查直線與平面平行、二面角、異面直線所成的角等基礎(chǔ)知識.考查用空間向量解決立體幾何問題的方法.考查空間想象能力、運算求解能力和推理論證能力.首先要建立空間直角坐標系,寫出相關(guān)點的坐標,證明線面平行只需求出平面的法向量,計算直線對應(yīng)的向量與法向量的數(shù)量積為0,求二面角只需求出兩個半平面對應(yīng)的法向量,借助法向量的夾角求二面角,利用向量的夾角公式,求出異面直線所成角的余弦值,利用已知條件,求出的值.試題解析:如圖,以A為原點,分別以,,方向為x軸、y軸、z軸正方向建立空間直角坐標系.依題意可得A(0,0,0),B(2,0,0),C(0,4,0),P(0,0,4),D(0,0,2),E(0,2,2),M(0,0,1),N(1,2,0).(1)證明:=(0,2,0),=(2,0,).設(shè),為平面BDE的法向量,則,即.不妨設(shè),可得.又=(1,2,),可得.因為平面BDE,所以MN//平面BDE.(2)解:易知為平面CEM的一個法向量.設(shè)為平面EMN的法向量,則,因為,,所以.不妨設(shè),可得.因此有,于是.所以,二面角C—EM—N的正弦值為.(3)解:依題意,設(shè)AH=h(),則H(0,0,h),進而可得,.由已知,得,整理得,解得,或.所以,線段AH的長為或.【考點】直線與平面平行、二面角、異面直線所成角【名師點睛】空間向量是解決空間幾何問題的銳利武器,不論是求空間角、空間距離還是證明線面關(guān)系利用空間向量都很方便,利用向量夾角公式求異面直線所成的角又快又準,特別是借助平面的法向量求線面角,二面角或點到平面的距離都很容易.22、(1)單調(diào)遞增區(qū)間是(4,+∞),單調(diào)遞減區(qū)間是(0,4);(2)證明見解析.【解析】(1)求的導(dǎo)函數(shù),結(jié)合定義域及導(dǎo)數(shù)的符號確定單調(diào)區(qū)間;(2)法一:討論、時的零點情況,即可得,構(gòu)造,利用導(dǎo)數(shù)研究在(0,2a)恒成立,結(jié)合單調(diào)性證明不等式;法二:設(shè),由零點可得,進而應(yīng)用分析法將結(jié)論轉(zhuǎn)化為證明,綜合換元法、導(dǎo)數(shù)證明結(jié)論即可.【小問1詳解】函數(shù)的定義域為(0,+∞),當(dāng)a=2時,,則令得,x>4;令得,0<x<4;所以,單調(diào)遞增區(qū)間是(4,+∞);單調(diào)遞減區(qū)間是(0,4).【小問2詳解】法一:當(dāng)a≤0時,>0在(0,+∞)上恒成立,故函數(shù)不可能有兩個不相等的零點,當(dāng)a>0時,函數(shù)在(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論