2023-2024學年河南省鄭州市高三1月第一次診斷數(shù)學試題理試卷_第1頁
2023-2024學年河南省鄭州市高三1月第一次診斷數(shù)學試題理試卷_第2頁
2023-2024學年河南省鄭州市高三1月第一次診斷數(shù)學試題理試卷_第3頁
2023-2024學年河南省鄭州市高三1月第一次診斷數(shù)學試題理試卷_第4頁
2023-2024學年河南省鄭州市高三1月第一次診斷數(shù)學試題理試卷_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022-2023學年河南省鄭州市高三1月第一次診斷數(shù)學試題理試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設(shè)集合、是全集的兩個子集,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件2.復數(shù)的共軛復數(shù)在復平面內(nèi)所對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.記等差數(shù)列的公差為,前項和為.若,,則()A. B. C. D.4.設(shè)a,b∈(0,1)∪(1,+∞),則"a=b"是"logA.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件5.已知展開式的二項式系數(shù)和與展開式中常數(shù)項相等,則項系數(shù)為()A.10 B.32 C.40 D.806.函數(shù)在的圖像大致為A. B. C. D.7.如圖,這是某校高三年級甲、乙兩班在上學期的5次數(shù)學測試的班級平均分的莖葉圖,則下列說法不正確的是()A.甲班的數(shù)學成績平均分的平均水平高于乙班B.甲班的數(shù)學成績的平均分比乙班穩(wěn)定C.甲班的數(shù)學成績平均分的中位數(shù)高于乙班D.甲、乙兩班這5次數(shù)學測試的總平均分是1038.已知條件,條件直線與直線平行,則是的()A.充要條件 B.必要不充分條件 C.充分不必要條件 D.既不充分也不必要條件9.一個四面體所有棱長都是4,四個頂點在同一個球上,則球的表面積為()A. B. C. D.10.已知復數(shù),則的虛部是()A. B. C. D.111.已知數(shù)列{an}滿足a1=3,且aA.22n-1+1 B.22n-1-112.已知函數(shù),為圖象的對稱中心,若圖象上相鄰兩個極值點,滿足,則下列區(qū)間中存在極值點的是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若向量與向量垂直,則______.14.某班有學生52人,現(xiàn)將所有學生隨機編號,用系統(tǒng)抽樣方法,抽取一個容量為4的樣本,已知5號、31號、44號學生在樣本中,則樣本中還有一個學生的編號是__________.15.在平面直角坐標系xOy中,若圓C1:x2+(y-1)2=r2(r>0)上存在點P,且點P關(guān)于直線x-y=0的對稱點Q在圓C2:(x-2)2+(y-1)2=1上,則r的取值范圍是________.16.已知拋物線的焦點為,過點且斜率為1的直線交拋物線于兩點,,若線段的垂直平分線與軸交點的橫坐標為,則的值為_________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知矩陣,求矩陣的特征值及其相應的特征向量.18.(12分)已知中,,,是上一點.(1)若,求的長;(2)若,,求的值.19.(12分)曲線的參數(shù)方程為(為參數(shù)),以原點為極點,軸的正半軸為極軸的極坐標系中,曲線的極坐標方程為.(1)求曲線的極坐標方程和曲線的直角坐標方程;(2)若直線與曲線,的交點分別為、(、異于原點),當斜率時,求的最小值.20.(12分)在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)).以坐標原點為極點,軸正半軸為極軸,建立極坐標系.已知點的直角坐標為,過的直線與曲線相交于,兩點.(1)若的斜率為2,求的極坐標方程和曲線的普通方程;(2)求的值.21.(12分)已知橢圓,左、右焦點為,點為上任意一點,若的最大值為3,最小值為1.(1)求橢圓的方程;(2)動直線過點與交于兩點,在軸上是否存在定點,使成立,說明理由.22.(10分)已知圓的極坐標方程是,以極點為平面直角坐標系的原點,極軸為軸的正半軸,建立平面直角坐標系,直線的參數(shù)方程是是參數(shù)),若直線與圓相切,求實數(shù)的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】

作出韋恩圖,數(shù)形結(jié)合,即可得出結(jié)論.【詳解】如圖所示,,同時.故選:C.【點睛】本題考查集合關(guān)系及充要條件,注意數(shù)形結(jié)合方法的應用,屬于基礎(chǔ)題.2.D【解析】

由復數(shù)除法運算求出,再寫出其共軛復數(shù),得共軛復數(shù)對應點的坐標.得結(jié)論.【詳解】,,對應點為,在第四象限.故選:D.【點睛】本題考查復數(shù)的除法運算,考查共軛復數(shù)的概念,考查復數(shù)的幾何意義.掌握復數(shù)的運算法則是解題關(guān)鍵.3.C【解析】

由,和,可求得,從而求得和,再驗證選項.【詳解】因為,,所以解得,所以,所以,,,故選:C.【點睛】本題考查等差數(shù)列的通項公式、前項和公式,還考查運算求解能力,屬于中檔題.4.A【解析】

根據(jù)題意得到充分性,驗證a=2,b=1【詳解】a,b∈0,1∪1,+∞,當"a=b當logab=log故選:A.【點睛】本題考查了充分不必要條件,意在考查學生的計算能力和推斷能力.5.D【解析】

根據(jù)二項式定理通項公式可得常數(shù)項,然后二項式系數(shù)和,可得,最后依據(jù),可得結(jié)果.【詳解】由題可知:當時,常數(shù)項為又展開式的二項式系數(shù)和為由所以當時,所以項系數(shù)為故選:D【點睛】本題考查二項式定理通項公式,熟悉公式,細心計算,屬基礎(chǔ)題.6.B【解析】

由分子、分母的奇偶性,易于確定函數(shù)為奇函數(shù),由的近似值即可得出結(jié)果.【詳解】設(shè),則,所以是奇函數(shù),圖象關(guān)于原點成中心對稱,排除選項C.又排除選項D;,排除選項A,故選B.【點睛】本題通過判斷函數(shù)的奇偶性,縮小考察范圍,通過計算特殊函數(shù)值,最后做出選擇.本題較易,注重了基礎(chǔ)知識、基本計算能力的考查.7.D【解析】

計算兩班的平均值,中位數(shù),方差得到正確,兩班人數(shù)不知道,所以兩班的總平均分無法計算,錯誤,得到答案.【詳解】由題意可得甲班的平均分是104,中位數(shù)是103,方差是26.4;乙班的平均分是102,中位數(shù)是101,方差是37.6,則A,B,C正確.因為甲、乙兩班的人數(shù)不知道,所以兩班的總平均分無法計算,故D錯誤.故選:.【點睛】本題考查了莖葉圖,平均值,中位數(shù),方差,意在考查學生的計算能力和應用能力.8.C【解析】

先根據(jù)直線與直線平行確定的值,進而即可確定結(jié)果.【詳解】因為直線與直線平行,所以,解得或;即或;所以由能推出;不能推出;即是的充分不必要條件.故選C【點睛】本題主要考查充分條件和必要條件的判定,熟記概念即可,屬于基礎(chǔ)題型.9.A【解析】

將正四面體補成正方體,通過正方體的對角線與球的半徑關(guān)系,求解即可.【詳解】解:如圖,將正四面體補形成一個正方體,正四面體的外接球與正方體的外接球相同,∵四面體所有棱長都是4,∴正方體的棱長為,設(shè)球的半徑為,則,解得,所以,故選:A.【點睛】本題主要考查多面體外接球問題,解決本題的關(guān)鍵在于,巧妙構(gòu)造正方體,利用正方體的外接球的直徑為正方體的對角線,從而將問題巧妙轉(zhuǎn)化,屬于中檔題.10.C【解析】

化簡復數(shù),分子分母同時乘以,進而求得復數(shù),再求出,由此得到虛部.【詳解】,,所以的虛部為.故選:C【點睛】本小題主要考查復數(shù)的乘法、除法運算,考查共軛復數(shù)的虛部,屬于基礎(chǔ)題.11.D【解析】試題分析:因為an+1=4an+3,所以an+1+1=4(an+1),即an+1+1an+1考點:數(shù)列的通項公式.12.A【解析】

結(jié)合已知可知,可求,進而可求,代入,結(jié)合,可求,即可判斷.【詳解】圖象上相鄰兩個極值點,滿足,即,,,且,,,,,,當時,為函數(shù)的一個極小值點,而.故選:.【點睛】本題主要考查了正弦函數(shù)的圖象及性質(zhì)的簡單應用,解題的關(guān)鍵是性質(zhì)的靈活應用.二、填空題:本題共4小題,每小題5分,共20分。13.0【解析】

直接根據(jù)向量垂直計算得到答案.【詳解】向量與向量垂直,則,故.故答案為:.【點睛】本題考查了根據(jù)向量垂直求參數(shù),意在考查學生的計算能力.14.18【解析】

根據(jù)系統(tǒng)抽樣的定義和方法,所抽取的4個個體的編號成等差數(shù)列,故可根據(jù)其中三個個體的編號求出另一個個體的編號.【詳解】解:根據(jù)系統(tǒng)抽樣的定義和方法,所抽取的4個個體的編號成等差數(shù)列,已知其中三個個體的編號為5,31,44,故還有一個抽取的個體的編號為18,故答案為:18【點睛】本題主要考查系統(tǒng)抽樣的定義和方法,屬于簡單題.15.【解析】

設(shè)圓C1上存在點P(x0,y0),則Q(y0,x0),分別滿足兩個圓的方程,列出方程組,轉(zhuǎn)化成兩個新圓有公共點求參數(shù)范圍.【詳解】設(shè)圓C1上存在點P(x0,y0)滿足題意,點P關(guān)于直線x-y=0的對稱點Q(y0,x0),則,故只需圓x2+(y-1)2=r2與圓(x-1)2+(y-2)2=1有交點即可,所以|r-1|≤≤r+1,解得.故答案為:【點睛】此題考查圓與圓的位置關(guān)系,其中涉及點關(guān)于直線對稱點問題,兩個圓有公共點的判定方式.16.1【解析】

設(shè),寫出直線方程代入拋物線方程后應用韋達定理求得,由拋物線定義得焦點弦長,求得,再寫出的垂直平分線方程,得,從而可得結(jié)論.【詳解】拋物線的焦點坐標為,直線的方程為,據(jù)得.設(shè),則.線段垂直平分線方程為,令,則,所以,所以.故答案為:1.【點睛】本題考查拋物線的焦點弦問題,根據(jù)拋物線的定義表示出焦點弦長是解題關(guān)鍵.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.矩陣屬于特征值的一個特征向量為,矩陣屬于特征值的一個特征向量為【解析】

先由矩陣特征值的定義列出特征多項式,令解方程可得特征值,再由特征值列出方程組,即可求得相應的特征向量.【詳解】由題意,矩陣的特征多項式為,令,解得,,將代入二元一次方程組,解得,所以矩陣屬于特征值的一個特征向量為;同理,矩陣屬于特征值的一個特征向量為v【點睛】本題主要考查了矩陣的特征值與特征向量的計算,其中解答中熟記矩陣的特征值和特征向量的計算方法是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.18.(1)(2)【解析】

(1)運用三角形面積公式求出的長度,然后再運用余弦定理求出的長.(2)運用正弦定理分別表示出和,結(jié)合已知條件計算出結(jié)果.【詳解】(1)由在中,由余弦定理可得(2)由已知得在中,由正弦定理可知在中,由正弦定理可知故【點睛】本題考查了正弦定理、三角形面積公式以及余弦定理,結(jié)合三角形熟練運用各公式是解題關(guān)鍵,此類題目是??碱}型,能夠運用公式進行邊角互化,需要掌握解題方法.19.(1)的極坐標方程為;曲線的直角坐標方程.(2)【解析】

(1)消去參數(shù),可得曲線的直角坐標方程,再利用極坐標與直角坐標的互化,即可求解.(2)解法1:設(shè)直線的傾斜角為,把直線的參數(shù)方程代入曲線的普通坐標方程,求得,再把直線的參數(shù)方程代入曲線的普通坐標方程,得,得出,利用基本不等式,即可求解;解法2:設(shè)直線的極坐標方程為,分別代入曲線,的極坐標方程,得,,得出,即可基本不等式,即可求解.【詳解】(1)由題曲線的參數(shù)方程為(為參數(shù)),消去參數(shù),可得曲線的直角坐標方程為,即,則曲線的極坐標方程為,即,又因為曲線的極坐標方程為,即,根據(jù),代入即可求解曲線的直角坐標方程.(2)解法1:設(shè)直線的傾斜角為,則直線的參數(shù)方程為(為參數(shù),),把直線的參數(shù)方程代入曲線的普通坐標方程得:,解得,,,把直線的參數(shù)方程代入曲線的普通坐標方程得:,解得,,,,,即,,,,當且僅當,即時取等號,故的最小值為.解法2:設(shè)直線的極坐標方程為),代入曲線的極坐標方程,得,,把直線的參數(shù)方程代入曲線的極坐標方程得:,,即,,曲線的參,即,,,,當且僅當,即時取等號,故的最小值為.【點睛】本題主要考查了參數(shù)方程與普通方程,以及極坐標方程與直角坐標方程點互化,以及直線參數(shù)方程的應用和極坐標方程的應用,其中解答中熟記互化公式,合理應用直線的參數(shù)方程中參數(shù)的幾何意義是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.20.(1):,:;(2)【解析】

(1)根據(jù)點斜式寫出直線的直角坐標方程,并轉(zhuǎn)化為極坐標方程,利用,將曲線的參數(shù)方程轉(zhuǎn)化為普通方程.(2)將直線的參數(shù)方程代入曲線的普通方程,結(jié)合直線參數(shù)的幾何意義以及根與系數(shù)關(guān)系,求得的值.【詳解】(1)的直角坐標方程為,即,則的極坐標方程為.曲線的普通方程為.(2)直線的參數(shù)方程為(為參數(shù),為的傾斜角),代入曲線的普通方程,得.設(shè),對應的參數(shù)分別為,,所以,在的兩側(cè).則.【點睛】本小題主要考查直角坐標化為極坐標,考查參數(shù)方程化為普通方程,考查直線參數(shù)方程,考查直線參數(shù)的幾何意義,屬于中檔題.21.(1)(2)存在;詳見解析【解析】

(1)由橢圓的性質(zhì)得,解得后可得,從而得橢圓方程;(2)設(shè),當直線斜率存在時,設(shè)為,代入橢圓方程,整理后應用韋達定理得,代入=0由恒成立問題可求得.驗證斜率不存在時也適合即得.【詳解】解:(1)由題易知解得,所以橢圓方程為(2)設(shè)當直線斜率存在時,設(shè)為與橢圓方程聯(lián)立得,顯然所以因為化簡解得即所以此時存在定點滿足

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論