




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆四川省自貢市數(shù)學(xué)高二上期末檢測試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.1852年英國來華傳教士偉烈亞力將《孫子算經(jīng)》中“物不知數(shù)”問題的解法傳至歐洲,西方人稱之為“中國剩余定理”.現(xiàn)有這樣一個問題:將1到200中被3整除余1且被4整除余2的數(shù)按從小到大的順序排成一列,構(gòu)成數(shù)列,則=()A.130 B.132C.140 D.1442.已知數(shù)列中,其前項和為,且滿足,數(shù)列的前項和為,若對恒成立,則實數(shù)的值可以是()A. B.2C.3 D.3.如圖已知正方體,點是對角線上的一點且,,則()A.當時,平面 B.當時,平面C.當為直角三角形時, D.當?shù)拿娣e最小時,4.人教A版選擇性必修二教材的封面圖案是斐波那契螺旋線,它被譽為自然界最完美的“黃金螺旋”,自然界存在很多斐波那契螺旋線的圖案,例如向日葵、鸚鵡螺等.斐波那契螺旋線的畫法是:以斐波那契數(shù)1,1,2,3,5,8,…為邊長的正方形拼成長方形,然后在每個正方形中畫一個圓心角為90°的圓弧,這些圓弧所連起來的弧線就是斐波那契螺旋線.下圖為該螺旋線在正方形邊長為1,1,2,3,5,8的部分,如圖建立平面直角坐標系(規(guī)定小方格的邊長為1),則接下來的一段圓弧所在圓的方程為()A. B.C. D.5.若命題“,”是假命題,則實數(shù)的取值范圍為()A. B.C. D.6.已知,且,則的最大值為()A. B.C. D.7.橢圓()的右頂點是拋物線的焦點,且短軸長為2,則該橢圓方程為()A. B.C. D.8.直線在軸上的截距為()A.3 B.C. D.9.如圖,已知二面角平面角的大小為,其棱上有、兩點,、分別在這個二面角的兩個半平面內(nèi),且都與垂直.已知,,則()A. B.C. D.10.在直三棱柱中,底面是等腰直角三角形,,點在棱上,且,則與平面所成角的正弦值為()A. B.C. D.11.已知向量,且與互相垂直,則k=()A. B.C. D.12.空間直角坐標系中,已知則點關(guān)于平面的對稱點的坐標為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.求值______.14.空間直角坐標系中,點,的坐標分別為,,則___________.15.若雙曲線的離心率為2,則此雙曲線的漸近線方程___________.16.如圖是某賽季CBA廣東東莞銀行隊甲、乙兩名籃球運動員每場比賽得分的莖葉圖,則甲、乙比賽得分的中位數(shù)之和是______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線的焦點為F,傾斜角為45°的直線m過點F,若此拋物線上存在3個不同的點到m的距離為,求此拋物線的準線方程18.(12分)已知數(shù)列的前n項和為,且(1)證明數(shù)列是等比數(shù)列,并求出數(shù)列的通項公式;(2)在與之間插入n個數(shù),使得包括與在內(nèi)的這個數(shù)成等差數(shù)列,其公差為,求數(shù)列的前n項和19.(12分)男子10米氣步槍比賽規(guī)則如下:在資格賽中,射手在距離靶子10米處,采用立姿,在105分鐘內(nèi)射擊60發(fā)子彈,總環(huán)數(shù)排名前8名的射手進入決賽;在決賽中,每位射手僅射擊10發(fā)子彈.已知甲乙兩名運動員均進入了決賽,資格賽中的環(huán)數(shù)情況整理得下表:環(huán)數(shù)頻數(shù)678910甲2352327乙5502525以各人這60發(fā)子彈環(huán)數(shù)的頻率作為決賽中各發(fā)子彈環(huán)數(shù)發(fā)生的概率,甲乙兩人射擊互不影響(1)求甲運動員在決賽中前2發(fā)子彈共打出1次10環(huán)的概率;(2)決賽打完第9發(fā)子彈后,甲比乙落后2環(huán),求最終甲能戰(zhàn)勝乙(甲環(huán)數(shù)大于乙環(huán)數(shù))的概率20.(12分)已知中,內(nèi)角的對邊分別為,且滿足.(1)求的值;(2)若,求面積的最大值.21.(12分)如圖1,四邊形為直角梯形,,,,,為上一點,為的中點,且,,現(xiàn)將梯形沿折疊(如圖2),使平面平面.(1)求證:平面平面.(2)能否在邊上找到一點(端點除外)使平面與平面所成角的余弦值為?若存在,試確定點的位置,若不存在,請說明理由.22.(10分)設(shè)雙曲線的左、右焦點分別為,,且,一條漸近線的傾斜角為60°(1)求雙曲線C的標準方程和離心率;(2)求分別以,為左、右頂點,短軸長等于雙曲線虛軸長的橢圓的標準方程
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】分析數(shù)列的特點,可知其是等差數(shù)列,寫出其通項公式,進而求得結(jié)果,【詳解】被3整除余1且被4整除余2的數(shù)按從小到大的順序排成一列,這樣的數(shù)構(gòu)成首項為10,公差為12的等差數(shù)列,所以,故,故選:A2、D【解析】由求出,從而可以求,再根據(jù)已知條件不等式恒成立,可以進行適當放大即可.【詳解】若n=1,則,故;若,則由得,故,所以,,又因為對恒成立,當時,則恒成立,當時,,所以,,,若n為奇數(shù),則;若n為偶數(shù),則,所以所以,對恒成立,必須滿足.故選:D3、D【解析】建立空間直角坐標系,利用空間向量法一一計算可得;【詳解】解:由題可知,如圖令正方體的棱長為1,建立空間直角坐標系,則,,,,,,,所以,因為,所以,所以,,,,設(shè)平面的法向量為,則,令,則,,所以對于A:若平面,則,則,解得,故A錯誤;對于B:若平面,則,即,解得,故B錯誤;當為直角三角形時,有,即,解得或(舍去),故C錯誤;設(shè)到的距離為,則,當?shù)拿娣e最小時,,故正確故選:4、C【解析】由題意可知圖中每90°的圓弧半徑符合斐波那契數(shù)1,1,2,3,5,8,…,從而可求出下一段圓弧的半徑為13,由于每一個圓弧為四分之一圓,從而可求出下一段圓弧所以圓的圓心,進而可得其方程【詳解】解:由題意可知圖中每90°的圓弧半徑符合斐波那契數(shù)1,1,2,3,5,8,…,從而可求出下一段圓弧的半徑為13,由題意可知下一段圓弧過點,因為每一段圓弧的圓心角都為90°,所以下一段圓弧所在圓的圓心與點的連線平行于軸,因為下一段圓弧半徑為13,所以所求圓的圓心為,所以所求圓的方程為,故選:C5、A【解析】根據(jù)命題與它的否定命題一真一假,寫出該命題的否定命題,再求實數(shù)的取值范圍【詳解】解:命題“,”是假命題,則它的否定命題“,”是真命題,時,不等式為,顯然成立;時,應(yīng)滿足,解得,所以實數(shù)的取值范圍是故選:A6、A【解析】由基本不等式直接求解即可得到結(jié)果.【詳解】由基本不等式知;(當且僅當時取等號),的最大值為.故選:A.7、A【解析】求得拋物線的焦點從而求得,再結(jié)合題意求得,即可寫出橢圓方程.【詳解】因為拋物線的焦點坐標為,故可得;又短軸長為2,故可得,即;故橢圓方程為:.故選:.8、A【解析】把直線方程由一般式化成斜截式,即可得到直線在軸上的截距.【詳解】由,可得,則直線在軸上的截距為3.故選:A9、C【解析】以、為鄰邊作平行四邊形,連接,計算出、的長,證明出,利用勾股定理可求得的長.【詳解】如下圖所示,以、為鄰邊作平行四邊形,連接,因為,,則,又因為,,,故二面角的平面角為,因為四邊形為平行四邊形,則,,因為,故為等邊三角形,則,,則,,,故平面,因為平面,則,故.故選:C.10、C【解析】取AC的中點M,過點M作,且使得,進而證明平面,然后判斷出是與平面所成的角,最后求出答案.【詳解】如圖,取AC的中點M,因為,則,過點M作,且使得,則四邊形BDNM是平行四邊形,所以.由題意,平面ABC,則平面ABC,而平面ABC,所以,又,所以平面,而所以平面,連接DA,NA,則是與平面所成的角.而,于是,.故選:.11、C【解析】利用垂直的坐標表示列方程求解即可.【詳解】由與互相垂直得,解得故選:C.12、D【解析】根據(jù)空間直角坐標系的對稱性可得答案.【詳解】根據(jù)空間直角坐標系的對稱性可得關(guān)于平面的對稱點的坐標為,故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】將原式子變形為:,將代入變形后的式子得到結(jié)果即可.【詳解】將代入變形后的式子得到結(jié)果為故答案為:14、【解析】利用空間直角坐標系中兩點間的距離公式計算即得.【詳解】在空間直角坐標系中,因點,的坐標分別為,,所以.故答案為:15、【解析】根據(jù)離心率得出,結(jié)合得出關(guān)系,即可求出雙曲線的漸近線方程.【詳解】解:由題可知,離心率,即,又,即,則,故此雙曲線的漸近線方程為.故答案為:.16、58【解析】分別將甲、乙兩名運動員的得分按小到大或者大到小排序,分別確定中位數(shù),再相加即可【詳解】因為甲、乙兩名籃球運動員各參賽11場,故中位數(shù)是第6個數(shù)甲的得分按小到大排序后為:12,22,23,32,33,34,35,40,43,44,46,所以,中位數(shù)為34乙的得分按小到大排序后為:12,13,21,22,23,24,31,31,34,40,49所以,中位數(shù)為24所以,中位數(shù)之和為34+24=58,故答案為:58三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、【解析】設(shè)出直線m的方程,利用方程組聯(lián)立、一元二次方程根的判別式求出與直線m平行的拋物線的切線方程,結(jié)合平行線間距離公式進行求解即可.【詳解】拋物線的焦點坐標為:,設(shè)直線m為,設(shè)為與拋物線相切,聯(lián)立直線與拋物線方程,化簡整理可得,,則,解得,且,故兩平行線間的距離,解得,故所求的準線方程為18、(1)證明見解析,(2)【解析】(1)根據(jù)公式得到,得到,再根據(jù)等比數(shù)列公式得到答案.(2)根據(jù)等差數(shù)列定義得到,再利用錯位相減法計算得到答案.【小問1詳解】,當時,,得到;當時,,兩式相減得到,整理得到,即,故,數(shù)列是首項為,公比為的等比數(shù)列,,即,驗證時滿足條件,故.【小問2詳解】,故,,,兩式相減得到:,整理得到:,故.19、(1)(2)【解析】(1)先求出甲運動員打中10環(huán)的概率,從而可求出甲運動員在決賽中前2發(fā)子彈共打出1次10環(huán)的概率;(2)由于甲比乙落后2環(huán),所以甲要獲勝,則乙6環(huán),甲9環(huán)或10環(huán),或者乙7環(huán),甲10環(huán),再利用獨立事件和互斥事件的概率公式求解即可【小問1詳解】由表中的數(shù)據(jù)可得甲運動員打中10環(huán)的概率為,所以甲運動員在決賽中前2發(fā)子彈共打出1次10環(huán)的概率為【小問2詳解】因為甲比乙落后2環(huán),所以甲要獲勝,則乙打中6環(huán),甲打中9環(huán)或10環(huán),或者乙打中7環(huán),甲打中10環(huán),因為由題意可得乙打中6環(huán)的概率和打中7環(huán)的概率均為,甲打中9環(huán)的概率為,打中10環(huán)的概率為,且甲乙兩人射擊互不影響所以最終甲能戰(zhàn)勝乙的概率為20、(1)2;(2).【解析】(1)利用正弦定理以及逆用兩角和的正弦公式得出,而,即可求出的值;(2)根據(jù)題意,由余弦定理得,再根據(jù)基本不等式求得,當且僅當時取得等號,即可求出面積的最大值.【小問1詳解】解:由題意得,由正弦定理得:,即,即,因為,所以【小問2詳解】解:由余弦定理,即,由基本不等式得:,即,當且僅當時取得等號,,所以面積的最大值為21、(1)證明見解析.(2)存在點,為線段中點【解析】(1)根據(jù)線面垂直的判定定理和面面垂直的判定定理,即可證得平面平面;(2)以為坐標原點建立如圖所示的空間直角坐標系,求得平面和平面的法向量,利用向量的夾角公式,即可求解.【詳解】(1)在直角梯形中,作于于,連接,則,,則,,則,在直角中,可得,則,所以,故,且折疊后與位置關(guān)系不變.又因為平面平面,且平面平面,所以平面,因為平面,所以平面平面.(2)在中,由,為的中點,可得.又因為平面平面,且平面平面,所以平面,則以為坐標原點建立如圖所示的空間直角坐標系,則,,,則,,設(shè)平面的法向量為,則,令,可得平面的法向量為,假設(shè)存在點使平面與平面所成角的余弦值為,且(),∵,∴,故,又,∴,又由,設(shè)平面的法向量為,可得,令得,∴,解得,因此存在點且
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 曲靖職業(yè)技術(shù)學(xué)院《文化產(chǎn)業(yè)與管理》2023-2024學(xué)年第二學(xué)期期末試卷
- 鄭州電子商務(wù)職業(yè)學(xué)院《推拿按摩技術(shù)》2023-2024學(xué)年第一學(xué)期期末試卷
- 西藏林芝地區(qū)第一中學(xué)2025屆高三下學(xué)期單科質(zhì)量檢查生物試題含解析
- 重慶市秀山縣2025年數(shù)學(xué)五年級第二學(xué)期期末調(diào)研試題含答案
- 浙江紹興諸暨市2025年數(shù)學(xué)四下期末綜合測試模擬試題含解析
- 蘭州交通大學(xué)《納稅籌劃》2023-2024學(xué)年第二學(xué)期期末試卷
- 鄭州電子商務(wù)職業(yè)學(xué)院《各家學(xué)說》2023-2024學(xué)年第二學(xué)期期末試卷
- 四川城市職業(yè)學(xué)院《馬克思主義哲學(xué)原著》2023-2024學(xué)年第二學(xué)期期末試卷
- 2025年廣西桂林市中考數(shù)學(xué)一模試卷
- 第21課+世界殖民體系的瓦解與新興國家的發(fā)展+教學(xué)設(shè)計-2024-2025學(xué)年高一下學(xué)期統(tǒng)編版(2019)必修中外歷史綱要下
- 心血管內(nèi)科介入耗材遴選目錄
- 2022-2023學(xué)年度高一英語必修二綜合測試卷二
- 機電副礦長風險管理標準和管理措施
- 經(jīng)濟學(xué)說史教程重點
- 通過PDCA降低住院精神病人的逃跑率
- 邊坡植草技術(shù)交底書
- 中國動畫發(fā)展史
- 優(yōu)秀廣告文案課件
- 八大特殊作業(yè)(八大危險作業(yè))安全管理知識與規(guī)范培訓(xùn)課件
- 醫(yī)院患者自殺應(yīng)急預(yù)案
- CAD培訓(xùn)課件(基礎(chǔ)教程)
評論
0/150
提交評論