山西省山大附中等晉豫名校2025屆高二上數(shù)學期末復習檢測試題含解析_第1頁
山西省山大附中等晉豫名校2025屆高二上數(shù)學期末復習檢測試題含解析_第2頁
山西省山大附中等晉豫名校2025屆高二上數(shù)學期末復習檢測試題含解析_第3頁
山西省山大附中等晉豫名校2025屆高二上數(shù)學期末復習檢測試題含解析_第4頁
山西省山大附中等晉豫名校2025屆高二上數(shù)學期末復習檢測試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

山西省山大附中等晉豫名校2025屆高二上數(shù)學期末復習檢測試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.雙曲線C:的漸近線方程為()A. B.C. D.2.已知等差數(shù)列為其前項和,且,且,則()A.36 B.117C. D.133.在四棱錐P-ABCD中,底面ABCD,,,點E為PA的中點,,,,則點B到平面PCD的距離為()A. B.C. D.4.在直三棱柱中,側(cè)面是邊長為的正方形,,,且,則異面直線與所成的角為()A. B.C. D.5.設雙曲線:的左、右焦點分別為、,P為C上一點,且,,則雙曲線的漸近線方程為()A. B.C. D.6.在中,角A,B,C的對邊分別為a,b,c.若,,則的形狀為()A.直角三角形 B.等邊三角形C.等腰直角三角形 D.等腰或直角三角形7.曲線在點處的切線方程是()A. B.C. D.8.動點P,Q分別在拋物線和圓上,則的最小值為()A. B.C. D.9.已知雙曲線的一個焦點到它的一條漸近線的距離為,則()A.5 B.25C. D.10.設是定義在R上的可導函數(shù),若(為常數(shù)),則()A. B.C. D.11.已知,,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.即不充分也不必要條件12.中國剪紙是一種用剪刀或刻刀在紙上剪刻花紋,用于裝點生活或配合其他民俗活動的民間藝術.如圖所示的圓形剪紙中,正六邊形的所有頂點都在該圓上,若在該圓形剪紙的內(nèi)部投擲一點,則該點恰好落在正六邊形內(nèi)部的概率為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.曲線在點處的切線方程是______.14.已知拋物線C:的焦點為F,過M(4,0)的直線交C于A、B兩點,設,的面積分別為、,則的最小值為______15.已知實數(shù),滿足不等式組,則目標函數(shù)的最大值為__________.16.已知橢圓的右焦點為,短軸的一個端點為,直線交橢圓于兩點.若,點到直線的距離不小于,則橢圓的離心率的取值范圍是______________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓:的離心率為,,分別為橢圓的左,右焦點,為橢圓上一點,的周長為.(1)求橢圓的方程;(2)為圓上任意一點,過作橢圓的兩條切線,切點分別為A,B,判斷是否為定值?若是,求出定值:若不是,說明理由,18.(12分)已知橢圓的左、右焦點分別為,,橢圓上一點滿足,且的面積為(1)求橢圓的方程;(2)直線與橢圓有且只有一個公共點,過點作直線的垂線.設直線交軸于,交軸于,且點,求的軌跡方程19.(12分)已知橢圓過點,且離心率.(1)求橢圓的方程;(2)設直交橢圓于兩點,判斷點與以線段為直徑的圓的位置關系,并說明理由.20.(12分)如圖,在三棱錐中,,點為線段上的點.(1)若平面,試確定點的位置,并說明理由;(2)若,,,在(1)成立的前提下,求二面角的余弦值.21.(12分)如圖,在四棱錐中,平面,四邊形是菱形,,,是的中點(1)求證:;(2)已知二面角的余弦值為,求與平面所成角的正弦值22.(10分)在①,②,③這三個條件中任選一個,補充在下面問題中,若問題中的存在,求實數(shù)的取值范圍;若問題中的不存在,請說明理由設等差數(shù)列的前n項和為,數(shù)列的前n項和為,___________,,,是否存在實數(shù),對任意都有?

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據(jù)給定的雙曲線方程直接求出其漸近線方程作答.【詳解】雙曲線C:的實半軸長,虛半軸長,即有,而雙曲線C的焦點在y軸上,所以雙曲線C的漸近線的方程為,即.故選:D2、B【解析】根據(jù)等差數(shù)列下標的性質(zhì),,進而根據(jù)條件求出,然后結(jié)合等差數(shù)列的求和公式和下標性質(zhì)求得答案.【詳解】由題意,,即為遞增數(shù)列,所以,又,又,聯(lián)立方程組解得:.于是,.故選:B.3、D【解析】為中點,連接,易得為平行四邊形,進而可知B到平面PCD的距離即為到平面PCD的距離,再由線面垂直的性質(zhì)確定線線垂直,在直角三角形中應用勾股定理求相關線段長,即可得△為直角三角形,最后應用等體積法求點面距即可.【詳解】若為中點,連接,又E為PA的中點,所以,,又,,則且,所以為平行四邊形,即,又面,面,所以面,故B到平面PCD的距離,即為到平面PCD的距離,由底面ABCD,面ABCD,即,,,又,即,,則面,面,即,而,,,,易知:,在△中;在△中;在△中;綜上,,故,又,則.所以B到平面PCD的距離為.故選:D4、C【解析】分析得出,以點為坐標原點,、、所在直線分別為、、軸建立空間直角坐標系,利用空間向量法可求得異面直線與所成的角.【詳解】由題意可知,,因為,,則,,因為平面,以點為坐標原點,、、所在直線分別為、、軸建立如下圖所示的空間直角坐標系,則點、、、,,,,因此,異面直線與所成的角為.故選:C.5、B【解析】根據(jù)雙曲線定義結(jié)合,求得,在中,利用余弦定理求得之間的關系,即可得出答案.【詳解】解:因為在雙曲線中,因為,所以,所以,在中,,,由余弦定理可得,即,所以,所以,所以,所以雙曲線的漸近線方程為.故選:B.6、B【解析】直接利用正弦定理以及已知條件,求出、、的關系,即可判斷三角形的形狀【詳解】解:在中,已知,,,分別為角,,的對邊),由正弦定理可知:,所以,解得,所以為等邊三角形故選:【點睛】本題考查三角形的形狀的判斷,正弦定理的應用,考查計算能力,屬于基礎題7、B【解析】求導,得到曲線在點處的斜率,寫出切線方程.【詳解】因為,所以曲線在點處斜率為4,所以曲線在點處的切線方程是,即,故選:B8、B【解析】設,根據(jù)兩點間距離公式,先求得P到圓心的最小距離,根據(jù)圓的幾何性質(zhì),即可得答案.【詳解】設,圓化簡為,即圓心為(0,4),半徑為,所以點P到圓心的距離,令,則,令,,為開口向上,對稱軸為的拋物線,所以的最小值為,所以,所以的最小值為.故選:B9、B【解析】由漸近線方程得到,焦點坐標為,漸近線方程為:,利用點到直線距離公式即得解【詳解】由題意,雙曲線故焦點坐標為,漸近線方程為:焦點到它的一條漸近線的距離為:解得:故選:B10、C【解析】根據(jù)導數(shù)的定義即可求解.【詳解】.故選:C.11、C【解析】根據(jù)充要條件的定義進行判斷【詳解】解:因為函數(shù)為增函數(shù),由,所以,故“”是“”的充分條件,由,所以,故“”是“”的必要條件,故“”是“”的充要條件故選:C12、D【解析】設圓的半徑,求出圓的面積與正六邊形的面積,再根據(jù)幾何概型的概率公式計算可得;【詳解】解:設圓的半徑,則,則,所以,所以在該圓形剪紙的內(nèi)部投擲一點,則該點恰好落在正六邊形內(nèi)部的概率;故選:D二、填空題:本題共4小題,每小題5分,共20分。13、x-y-2=0【解析】解:因為曲線在點(1,-1)處的切線方程是由點斜式可知為x-y-2=014、【解析】設直線的方程為,,與拋物線的方程聯(lián)立整理得,由三角形的面積公式求得,再根據(jù)基本不等式可得答案.【詳解】解:由拋物線C:得焦點,又直線交C于A、B兩點,所以直線的斜率不為0,則設直線的方程為,,聯(lián)立,整理得,則,又,,所以,又,當且僅當,即時取等號,所以的最小值為.故答案為:.15、##【解析】畫出可行域,通過平移基準直線到可行域邊界來求得的最大值.【詳解】,畫出可行域如下圖所示,由圖可知,當時,取得最大值.故答案為:16、【解析】設左焦點為,連接,.則四邊形是平行四邊形,可得.設,由點M到直線l的距離不小于,即有,解得.再利用離心率計算公式即可得出范圍【詳解】設左焦點為,連接,.則四邊形是平行四邊形,故,所以,所以,設,則,故,從而,,,所以,即橢圓的離心率的取值范圍是【點睛】本題考查了橢圓的定義標準方程及其性質(zhì)、點到直線的距離公式、不等式的性質(zhì),考查了推理能力與計算能力,屬于中檔題三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)是;【解析】(1)由離心率和焦點三角形周長可求出,結(jié)合關系式得出,即可得出橢圓的方程;(2)由平行于軸特殊情況求出,即;當平行于軸時,設過的直線為,聯(lián)立橢圓方程,令化簡得關于的二次方程,由韋達定理即可求解.【小問1詳解】由題可知,,解得,又,解得,故橢圓的標準方程為:;【小問2詳解】如圖所示,當平行于軸時,恰好平行于軸,,,;當不平行于軸時,設,設過點的直線為,聯(lián)立得,令得,化簡得,設,則,又,故,即.綜上所述,.18、(1);(2).【解析】(1)利用可得,由橢圓關系可求得,進而得到橢圓方程;(2)將與橢圓方程聯(lián)立可得,得,結(jié)合韋達定理可確定點坐標,由此可得方程,進而得到,化簡整理即可得到所求軌跡方程.【小問1詳解】由焦點坐標可知:;,即,,,解得:,,解得:(舍)或,,橢圓的方程為:;【小問2詳解】由得:,,整理可得:;,解得:,,則,令,解得:;令,解得:;,即,又,,則的軌跡方程為:.【點睛】思路點睛:本題考查動點軌跡方程的求解問題,解題基本思路是能夠利用變量表示出所求點的坐標,根據(jù)坐標之間關系,化簡整理消掉變量得到所求軌跡方程;易錯點是忽略題目中的限制條件,軌跡中出現(xiàn)多余的點.19、(1)(2)點G在以AB為直徑的圓外【解析】解法一:(Ⅰ)由已知得解得所以橢圓E的方程為(Ⅱ)設點AB中點為由所以從而.所以.,故所以,故G在以AB為直徑的圓外解法二:(Ⅰ)同解法一.(Ⅱ)設點,則由所以從而所以不共線,所以銳角.故點G在以AB為直徑的圓外考點:1、橢圓的標準方程;2、直線和橢圓的位置關系;3、點和圓的位置關系20、(1)點為MC的中點,理由見解析;(2)【解析】(1)由線面垂直得到線線垂直,進而由三線合一得到點為MC的中點;(2)作出輔助線,找到二面角的平面角,利用勾股定理求出各邊長,用余弦定理求出答案.【小問1詳解】點為MC的中點,理由如下:因為平面,平面,所以,,又,由三線合一得:點為MC的中點【小問2詳解】取AB的中點H,連接PH,CH,則由(1)知:,結(jié)合點為MC的中點,所以PA=PB,故由三線合一得:PH⊥AB,且CH⊥AB,所以∠CHP即為二面角的平面角,因為,,,所以,,,由勾股定理得:,,,在△PCH中,由余弦定理得:,故二面角的余弦值為21、(1)證明見解析;(2).【解析】(1)由菱形及線面垂直的性質(zhì)可得、,再根據(jù)線面垂直的判定、性質(zhì)即可證結(jié)論.(2)構(gòu)建空間直角坐標系,設,結(jié)合已知確定相關點坐標,進而求面、面的法向量,結(jié)合已知二面角的余弦值求出參數(shù)t,再根據(jù)空間向量夾角的坐標表示求與平面所成角的正弦值【小問1詳解】由平面,平面,則,又是菱形,則,又,所以平面,平面所以E.【小問2詳解】分別以,,為,,軸正方向建立空間直角坐標系,設,則,由(1)知:平面的法向量為,令面的法向量為,則,令,可得,因為二面角的余弦值為,則,可得,則,設與平面所成的角為,又,,所以.22、答案見解析【解析】由已知條件可得,假設時,取最小值,則,若補充條件是①,則可求得,代入化簡可求出的取值范圍,從而可求得答案,若補充條件是②,則可得,該數(shù)列是遞減數(shù)列,所以不存在k,使得取最小值,若補充條件是③,則可得,代入化簡可求出的取值范圍,從而可求得答案,【詳解】解:等差數(shù)列的公差為d,當時,,得,從而,當時,得,所以數(shù)列是首項為,公比為的等比數(shù)列,所以,由對任意,都有,當?shù)炔顢?shù)列

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論