2025屆北京市豐臺(tái)區(qū)北京第十二中學(xué)數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視試題含解析_第1頁
2025屆北京市豐臺(tái)區(qū)北京第十二中學(xué)數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視試題含解析_第2頁
2025屆北京市豐臺(tái)區(qū)北京第十二中學(xué)數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視試題含解析_第3頁
2025屆北京市豐臺(tái)區(qū)北京第十二中學(xué)數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視試題含解析_第4頁
2025屆北京市豐臺(tái)區(qū)北京第十二中學(xué)數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2025屆北京市豐臺(tái)區(qū)北京第十二中學(xué)數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知隨機(jī)變量X的分布列如表所示,則()X123Pa2a3aA. B.C. D.2.已知命題p:,,則命題p的否定為()A., B.,C., D.,3.若平面的一個(gè)法向量為,點(diǎn),,,,到平面的距離為()A.1 B.2C.3 D.44.已知直線交圓于A,B兩點(diǎn),若點(diǎn)滿足,則直線l被圓C截得線段的長(zhǎng)是()A.3 B.2C. D.45.將函數(shù)的圖象向左平移個(gè)單位長(zhǎng)度后,得到函數(shù)的圖象,則()A. B.C. D.6.若等差數(shù)列的前項(xiàng)和為,首項(xiàng),,,則滿足成立的最大正整數(shù)是()A. B.C. D.7.“”是“”的()A.充要條件 B.充分不必要條件C.必要不充分條件 D.既不充分也不必要條件8.已知為坐標(biāo)原點(diǎn),點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)滿足,則的最小值為()A B.C. D.49.已知橢圓的短軸長(zhǎng)為8,且一個(gè)焦點(diǎn)是圓的圓心,則該橢圓的左頂點(diǎn)為()A B.C. D.10.已知直線的方程為,則該直線的傾斜角為()A. B.C. D.11.已知中,內(nèi)角,,的對(duì)邊分別為,,,,.若為直角三角形,則的面積為()A. B.C.或 D.或12.已知數(shù)列滿足,(且),若恒成立,則M的最小值是()A.2 B.C. D.3二、填空題:本題共4小題,每小題5分,共20分。13.已知方程,若此方程表示橢圓,則實(shí)數(shù)的取值范圍是________;若此方程表示雙曲線,則實(shí)數(shù)的取值范圍是________.14.已知p:“”為真命題,則實(shí)數(shù)a的取值范圍是_________.15.若復(fù)數(shù)滿足,則_____16.已知直線l:和圓C:,過直線l上一點(diǎn)P作圓C的一條切線,切點(diǎn)為A,則的最小值為______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)為慶祝中國(guó)共產(chǎn)黨成立100周年,某校舉行了黨史知識(shí)競(jìng)賽,在必答題環(huán)節(jié),甲、乙兩位選手分別從3道選擇題(1)甲至少抽到1道填空題(2)甲答對(duì)的題數(shù)比乙多的概率.18.(12分)中,內(nèi)角、、所對(duì)的邊為、、,.(1)求角的大?。唬?)若、、成等差數(shù)列,且,求邊長(zhǎng)的值.19.(12分)如圖,在四棱錐S?ABCD中,底面ABCD為矩形,,AB=2,,平面,,,E是SA的中點(diǎn)(1)求直線EF與平面SCD所成角的正弦值;(2)在直線SC上是否存在點(diǎn)M,使得平面MEF平面SCD?若存在,求出點(diǎn)M的位置;若不存在,請(qǐng)說明理由20.(12分)已知橢圓的離心率為,右焦點(diǎn)為F,且E上一點(diǎn)P到F的最大距離3(1)求橢圓E的方程;(2)若A,B為橢圓E上的兩點(diǎn),線段AB過點(diǎn)F,且其垂直平分線交x軸于H點(diǎn),,求21.(12分)如圖,在三棱錐中,是邊長(zhǎng)為2的等邊三角形,,O是BC的中點(diǎn),(1)證明:平面平面BCD;(2)若三棱錐的體積為,E是棱AC上的一點(diǎn),當(dāng)時(shí),二面角E-BD-C大小為60°,求t的值22.(10分)如圖,已知正方體的棱長(zhǎng)為2,,,分別為,,的中點(diǎn)(1)求直線與直線所成角余弦值;(2)求點(diǎn)到平面的距離

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】根據(jù)分布列性質(zhì)計(jì)算可得;【詳解】解:依題意,解得,所以;故選:C2、D【解析】根據(jù)全稱命題與存在性命題的關(guān)系,準(zhǔn)確改寫,即可求解.【詳解】根據(jù)全稱命題與存在性命題的關(guān)系可得:命題“p:,”的否定式為“,”.故選:D.3、B【解析】求出,點(diǎn)A到平面的距離:,由此能求出結(jié)果【詳解】解:,,,,∴為平面的一條斜線,且∴點(diǎn)到平面的距離:故選:B.4、B【解析】由題設(shè)知為圓的圓心且A、B在圓上,根據(jù)已知及向量數(shù)量積的定義求的大小,進(jìn)而判斷△的形狀,即可得直線l被圓C截得線段的長(zhǎng).【詳解】∵點(diǎn)為圓的圓心且A、B在圓上,又,∴,∴,又,∴,故△為等邊三角形,∴直線l被圓C截得線段的長(zhǎng)是2故選:B5、A【解析】先化簡(jiǎn)函數(shù)表達(dá)式,然后再平移即可.【詳解】函數(shù)的圖象向左平移個(gè)單位長(zhǎng)度后,得到的圖象.故選:A6、B【解析】由等差數(shù)列的,及得數(shù)列是遞減的數(shù)列,因此可確定,然后利用等差數(shù)列的性質(zhì)求前項(xiàng)和,確定和的正負(fù)【詳解】∵,∴和異號(hào),又?jǐn)?shù)列是等差數(shù)列,首項(xiàng),∴是遞減的數(shù)列,,由,所以,,∴滿足的最大自然數(shù)為4040故選:B【點(diǎn)睛】關(guān)鍵點(diǎn)睛:本題求滿足的最大正整數(shù)的值,關(guān)鍵就是求出,時(shí)成立的的值,解題時(shí)應(yīng)充分利用等差數(shù)列下標(biāo)和的性質(zhì)求解,屬于中檔題.7、B【解析】根據(jù)充分條件、必要條件的定義判斷即可;【詳解】解:由,得,反之不成立,如,,滿足,但是不滿足,故“”是“”的充分不必要條件故選:B8、B【解析】由數(shù)量積的坐標(biāo)運(yùn)算求得,令,化為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,把最優(yōu)解的坐標(biāo)代入目標(biāo)函數(shù)得答案【詳解】解:根據(jù)題意可得,、,所以,令,由約束條件作出可行域如下圖所示,由得,即,由,得,由圖可知,當(dāng)直線過時(shí),直線在軸上的截距最小,有最小值為,即,所以故選:B9、D【解析】根據(jù)橢圓的一個(gè)焦點(diǎn)是圓的圓心,求得c,再根據(jù)橢圓的短軸長(zhǎng)為8求得b即可.【詳解】圓的圓心是,所以橢圓的一個(gè)焦點(diǎn)是,即c=3,又橢圓的短軸長(zhǎng)為8,即b=4,所以橢圓長(zhǎng)半軸長(zhǎng)為,所以橢圓的左頂點(diǎn)為,故選:D10、D【解析】設(shè)直線傾斜角為,則,即可求出.【詳解】設(shè)直線的傾斜角為,則,又因?yàn)?,所?故選:D.11、C【解析】由正弦定理化角為邊后,由余弦定理求得,然后分類討論:或求解【詳解】由正弦定理,可化為:,即,所以,,所以,又為直角三角形,若,則,,,,若,則,,,故選:C12、C【解析】根據(jù),(且),利用累加法求得,再根據(jù)恒成立求解.【詳解】因?yàn)閿?shù)列滿足,,(且)所以,,,,因?yàn)楹愠闪?,所以,則M的最小值是,故選:C二、填空題:本題共4小題,每小題5分,共20分。13、①.②.【解析】分別根據(jù)橢圓、雙曲線的標(biāo)準(zhǔn)方程的特征建立不等式即可求解.【詳解】當(dāng)方程表示橢圓時(shí),則有且,所以的取值范圍是;當(dāng)方程表示雙曲線時(shí),則有或,所以的取值范圍是.故答案為:;14、【解析】根據(jù)條件將問題轉(zhuǎn)化不等式在上有解,則,由此求解出的取值范圍.【詳解】因?yàn)椤啊睘檎婷},所以不等式在上有解,所以,所以,故答案為:.15、【解析】設(shè),則,利用復(fù)數(shù)相等,求出,的值,結(jié)合復(fù)數(shù)的模長(zhǎng)公式進(jìn)行計(jì)算即可【詳解】設(shè),則,則由得,即,則,得,則,故答案為【點(diǎn)睛】本題主要考查復(fù)數(shù)模長(zhǎng)的計(jì)算,利用待定系數(shù)法,結(jié)合復(fù)數(shù)相等求出復(fù)數(shù)是解決本題的關(guān)鍵16、1【解析】求出圓C的圓心坐標(biāo)、半徑,再借助圓的切線性質(zhì)及勾股定理列式計(jì)算作答.【詳解】圓C:,圓心為,半徑,點(diǎn)C到直線l的距離,由圓的切線性質(zhì)知:,當(dāng)且僅當(dāng),即點(diǎn)P是過點(diǎn)C作直線l的垂線的垂足時(shí)取“=”,所以的最小值為1故答案為:1三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)把3道選擇題(2)設(shè),分別表示甲答對(duì)1道題,2道題的事件,,分別表示乙答對(duì)0道題,1道題的事件,分別求出它們的概率,甲答對(duì)的題數(shù)比乙多這個(gè)事件是,然后由相互獨(dú)立的事件和互斥事件的概率公式計(jì)算【詳解】解:(1)記3道選擇題則試驗(yàn)的樣本空間,.共有10個(gè)樣本點(diǎn),且每個(gè)樣本點(diǎn)是等可能發(fā)生的,所以這是一個(gè)古典概型.記事件A=“甲至少抽到1道填空題,.所以,,.所以,.因此,甲至少抽到1道填空題(2)設(shè),分別表示甲答對(duì)1道題,2道題的事件,分別表示乙答對(duì)0道題,1道題的事件,根據(jù)獨(dú)立性假定,得,.,.記事件B=“甲答對(duì)的題數(shù)比乙多”,則,且,,兩兩互斥,與,與,與分別相互獨(dú)立,所以..因此,甲答對(duì)的題數(shù)比乙多的概率為.18、(1);(2).【解析】(1)利用正弦定理可求得的值,結(jié)合角的取值范圍可求得角的值;(2)由三角形的面積公式可求得的值,由已知可得,利用余弦定理可得出關(guān)于的等式,即可求得邊的長(zhǎng).【小問1詳解】解:因?yàn)?,由正弦定理可得,,則,可得,,,因此,.【小問2詳解】解:,可得,因?yàn)椤?、成等差?shù)列,則,由余弦定理可得,解得.19、(1)(2)存在,M與S重合【解析】(1)分別取AB,BC中點(diǎn)M,N,易證兩兩互相垂直,以為正交基底,建立空間直角坐標(biāo)系,先求得平面SCD的一個(gè)法向量,再由求解;(2)假設(shè)存在點(diǎn)M,使得平面MEF平面SCD,再求得平面MEF的一個(gè)法向量,然后由求解.小問1詳解】解:分別取AB,BC中點(diǎn)M,N,則,又平面則兩兩互相垂直,以為正交基底,建立如圖所示的空間直角坐標(biāo)系,,所以,設(shè)平面SCD的一個(gè)法向量為,,,則,,直線EF與平面SBC所成角的正弦值為.【小問2詳解】假設(shè)存在點(diǎn)M,使得平面MEF平面SCD,,,設(shè)平面MEF的一個(gè)法向量,,令,則,平面MEF平面SCD,,,存在點(diǎn),此時(shí)M與S重合.20、(1);(2)【解析】(1)根據(jù)離心率和最大距離建立等式即可求解;(2)根據(jù)弦長(zhǎng),求出直線方程,解出點(diǎn)的坐標(biāo)即可得解.【詳解】(1)橢圓的離心率為,右焦點(diǎn)為F,且E上一點(diǎn)P到F的最大距離3,所以,所以,所以橢圓E的方程;(2)A,B為橢圓E上的兩點(diǎn),線段AB過點(diǎn)F,且其垂直平分線交x軸于H點(diǎn),所以線段AB所在直線斜率一定存在,所以設(shè)該直線方程代入,整理得:,設(shè),,,整理得:,當(dāng)時(shí),線段中點(diǎn)坐標(biāo),中垂線方程:,;當(dāng)時(shí),線段中點(diǎn)坐標(biāo),中垂線方程:,,綜上所述:.21、(1)證明見解析(2)3【解析】(1)證得平面BCD,結(jié)合面面垂直判定定理即可得出結(jié)論;(2)建立空間直角坐標(biāo)系,利用空間向量求二面角的公式可得,進(jìn)而解方程即可求出結(jié)果.【小問1詳解】因?yàn)?,O是BC的中點(diǎn),所以,又因?yàn)?,且,平面BCD,平面BCD,所以平面BCD,因?yàn)槠矫鍭BC,所以平面平面BCD【小問2詳解】連接OD,又因?yàn)槭沁呴L(zhǎng)為2的等邊三角形,所以,由(1)知平面BCD,所以AO,BC,DO兩兩互相垂直以O(shè)為坐標(biāo)原點(diǎn),OA,OB,OD所在直線分別為x軸,y軸,z軸建立如圖所示空間直角坐標(biāo)系設(shè),則O(0,0,0),A(0,0,m),B(1,0,0),C(-1,0,0),,因?yàn)锳-BCD的體積為,所以,解得,即A(0,0,3),,∵,∴,設(shè)平面BCD的法向量為,,則,取平面BCD的法向量為,,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論