版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆內蒙古阿拉善盟高二上數(shù)學期末復習檢測試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設,為雙曲線的上,下兩個焦點,過的直線l交該雙曲線的下支于A,B兩點,且滿足,,則雙曲線的離心率為()A. B.C. D.2.已知橢圓的左、右焦點分別為,過的直線與橢圓C相交P,Q兩點,若,且,則橢圓C的離心率為()A. B.C. D.3.若方程表示雙曲線,則()A. B.C. D.4.若直線與平行,則m的值為()A.-2 B.-1或-2C.1或-2 D.15.某機構通過抽樣調查,利用列聯(lián)表和統(tǒng)計量研究患肺病是否與吸煙有關,計算得,經(jīng)查對臨界值表知,,現(xiàn)給出四個結論,其中正確的是()A.因為,故有90%的把握認為“患肺病與吸煙有關"B.因為,故有95%把握認為“患肺病與吸煙有關”C.因為,故有90%的把握認為“患肺病與吸煙無關”D.因為,故有95%的把握認為“患肺病與吸煙無關”6.已知等差數(shù)列的前n項和為,且,,則為()A. B.C. D.7.已知橢圓與圓在第二象限的交點是點,是橢圓的左焦點,為坐標原點,到直線的距離是,則橢圓的離心率是()A. B.C. D.8.橢圓的兩焦點之間的距離為A. B.C. D.9.已知圓的半徑為,平面上一定點到圓心的距離,是圓上任意一點.線段的垂直平分線和直線相交于點,設點在圓上運動時,點的軌跡為,當時,軌跡對應曲線的離心率取值范圍為()A. B.C. D.10.饕餮紋是青銅器上常見的花紋之一,最早見于長江中下游地區(qū)的良渚文化陶器和玉器上,盛行于商代至西周早期.將青銅器中的饕餮紋的一部分畫到方格紙上,如圖所示,每個小方格的邊長為一個單位長度,有一點從點出發(fā),每次向右或向下跳一個單位長度,且向右或向下跳是等可能的,那么點經(jīng)過3次跳動后恰好是沿著饕餮紋的路線到達點的概率為()A. B.C. D.11.有7名同學參加百米競賽,預賽成績各不相同,取前3名參加決賽,小明同學已經(jīng)知道了自己的成績,為了判斷自己是否能進入決賽,他還需要知道7名同學成績的()A.平均數(shù) B.眾數(shù)C.中位數(shù) D.方差12.曲線上存在兩點A,B到直線到距離等于到的距離,則()A.12 B.13C.14 D.15二、填空題:本題共4小題,每小題5分,共20分。13.記為等差數(shù)列{}的前n項和,若,,則=_________.14.傳說古希臘畢達哥拉斯學派的數(shù)學家用沙粒和小石子來研究數(shù).他們根據(jù)沙?;蛐∈铀帕械男螤畎褦?shù)分成許多類,下圖中第一行的稱為三角形數(shù),第二行的稱為五邊形數(shù),則三角形數(shù)的第10項為__________,五邊形數(shù)的第項為__________.15.數(shù)列的前項和為,則_________________.16.設,則曲線在點處的切線的傾斜角是_______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在三棱柱中,四邊形為矩形,,,點E為棱的中點,.(1)求證:平面平面;(2)求平面AEB與平面夾角的余弦值.18.(12分)已知直線過點,且被兩條平行直線,截得的線段長為.(1)求的最小值;(2)當直線與軸平行時,求的值.19.(12分)已知拋物線C:,經(jīng)過的直線與拋物線C交于A,B兩點(1)求的值(其中為坐標原點);(2)設F為拋物線C的焦點,直線為拋物線C的準線,直線是拋物線C的通徑所在的直線,過C上一點P()()作直線與拋物線相切,若直線與直線相交于點M,與直線相交于點N,證明:點P在拋物線C上移動時,恒為定值,并求出此定值20.(12分)如圖,已知橢圓的焦點是圓與x軸的交點,橢圓C的長半軸長等于圓O的直徑(1)求橢圓C的方程;(2)F為橢圓C的右焦點,A為橢圓C的右頂點,點B在線段FA上,直線BD,BE與橢圓C的一個交點分別是D,E,直線BD與直線BE的傾斜角互補,直線BD與圓O相切,設直線BD的斜率為.當時,求k21.(12分)已知拋物線的頂點是坐標原點,焦點在軸的正半軸上,是拋物線上的點,點到焦點的距離為1,且到軸的距離是(1)求拋物線的標準方程;(2)假設直線通過點,與拋物線相交于,兩點,且,求直線的方程22.(10分)已知等差數(shù)列的首項為2,公差為8.在中每相鄰兩項之間插入三個數(shù),使它們與原數(shù)列的項一起構成一個新的等差數(shù)列.(1)求數(shù)列的通項公式;(2)若,,,,是從中抽取的若干項按原來的順序排列組成的一個等比數(shù)列,,,令,求數(shù)列的前項和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】設,表示出,由勾股定理列式計算得,然后在,再由勾股定理列式,計算離心率.【詳解】由題意得,,且,如圖所示,設,由雙曲線的定義可得,,因為,所以,得,所以,在中,,即.故選:A【點睛】雙曲線的離心率是雙曲線最重要的幾何性質,求雙曲線的離心率(或離心率的取值范圍),常見有兩種方法:求出,代入公式;②只需要根據(jù)一個條件得到關于的齊次式,結合轉化為的齊次式,然后等式(不等式)兩邊分別除以或轉化為關于的方程(不等式),解方程(不等式)即可得(的取值范圍)2、B【解析】設,由橢圓的定義及,結合勾股定理求參數(shù)m,進而由勾股定理構造橢圓參數(shù)的齊次方程求離心率.【詳解】設,橢圓的焦距為,則,由,有,解得,所以,故得:故選:B.3、C【解析】根據(jù)曲線方程表示雙曲線方程有,即可求參數(shù)范圍.【詳解】由題設,,可得.故選:C.4、C【解析】利用兩直線平行的判定有,即可求參數(shù)值.【詳解】由題設,,可得或.經(jīng)驗證不重合,滿足題意,故選:C.5、A【解析】根據(jù)給定條件利用獨立性檢驗的知識直接判斷作答.【詳解】因,且,由臨界值表知,,,所以有90%的把握認為“患肺病與吸煙有關”,則A正確,C不正確;.因臨界值3.841>3.305,則不能確定有95%的把握認為“患肺病與吸煙有關”,也不能確定有95%的把握認為“患肺病與吸煙無關”,即B,D都不正確.故選:A6、C【解析】直接由等差數(shù)列求和公式結合,求出,再由求和公式求出即可.【詳解】由題意知:,解得,則.故選:C.7、B【解析】連接,得到,作,求得,利用橢圓的定義,可求得,在直角中,利用勾股定理,整理的,即可求解橢圓的離心率.【詳解】如圖所示,連接,因為圓,可得,過點作,可得,且,由橢圓的定義,可得,所以,在直角中,可得,即,整理得,兩側同除,可得,解得或,又因為,所以橢圓的離心率為.故選:B【點睛】本題主要考查了橢圓的定義,直角三角形的勾股定理,以及橢圓的離心率的求解,其中解答中熟記橢圓的定義,結合直角三角形的勾股定理,列出關于的方程是解答的關鍵,著重考查了推理與計算能力,屬于基礎題.8、C【解析】根據(jù)題意,由于橢圓的方程為,故可知長半軸的長為,那么可知兩個焦點的坐標為,因此可知兩焦點之間的距離為,故選C考點:橢圓的簡單幾何性質點評:解決的關鍵是將方程變?yōu)闃藴适?,然后結合性質得到結論,屬于基礎題9、D【解析】分點A在圓內,圓外兩種情況,根據(jù)中垂線的性質,結合橢圓、雙曲線的定義可判斷軌跡,再由離心率計算即可求解.【詳解】當A在圓內時,如圖,,所以的軌跡是以O,A為焦點的橢圓,其中,,此時,,.當A在圓外時,如圖,因為,所以軌跡是以O,A為焦點的雙曲線,其中,,此時,,.綜上可知,.故選:D10、B【解析】利用古典概型的概率求解.【詳解】解:點從點出發(fā),每次向右或向下跳一個單位長度,跳3次,則樣本空間{(右,右,右),(右,右,下),(右,下,右),(下,右,右),(右,下,下),(下,右,下),(下,下,右),(下,下,下)},記“3次跳動后,恰好是沿著饕餮紋的路線到達點B”為事件,則{(下,下,右)},由古典概型的概率公式可知故選:B11、C【解析】根據(jù)中位數(shù)的性質,結合題設按成績排序7選3,即可知還需明確的成績數(shù)據(jù)信息.【詳解】由題設,7名同學參加百米競賽,要取前3名參加決賽,則成績從高到低排列,確定7名同學成績的中位數(shù),即第3名的成績便可判斷自己是否能進入決賽.故選:C.12、D【解析】由題可知A,B為半圓C與拋物線的交點,利用韋達定理及拋物線的定義即求.【詳解】由曲線,可得,即,為圓心為,半徑為7半圓,又直線為拋物線的準線,點為拋物線的焦點,依題意可知A,B為半圓C與拋物線的交點,由,得,設,則,,∴.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、18【解析】根據(jù)等差數(shù)列通項和前n項和公式即可得到結果.【詳解】設等差數(shù)列的公差為,由,得,解得,所以故答案為:1814、①.②.【解析】對于三角形數(shù),根據(jù)圖形尋找前后之間的關系,從而歸納出規(guī)律利用求和公式即得,對于五邊形數(shù)根據(jù)圖形尋找前后之間的關系,然后利用累加法可得通項公式.【詳解】由題可知三角形數(shù)的第1項為1,第2項為3=1+2,第3項為6=1+2+3,第4項為10=1+2+3+4,,因此,第10項為;五邊形數(shù)的第1項為,第2項為,第3項為,第4項為,…,因此,,所以當時,,當時也適合,故,即五邊形數(shù)的第項為.故答案為:55;.15、【解析】利用計算可得出數(shù)列的通項公式.【詳解】當時,;而不適合上式,.故答案:.16、【解析】利用導數(shù)的定義,化簡整理,可得,根據(jù)導數(shù)的幾何意義,即可求得答案.【詳解】因為=,所以,則曲線在點處的切線斜率為,即,又所以所求切線的傾斜角為故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】(1)根據(jù)矩形及勾股定理的逆定理可得線面垂直的條件,再由平面,即可證明面面垂直;(2)建立空間直角坐標后,求出相關法向量,再用夾角公式即可.【小問1詳解】證明:由三棱柱的性質及可知四邊形為菱形又∵∴為等邊三角形∴,又∵,∴,∴又∵四邊形為矩形∴又∵∴平面又∵平面∴平面平面.【小問2詳解】以B為原點BE為x軸,為y軸,BA為E軸建立空間直角坐標系,如圖所示,,,,,,設平面的法向量為.則即∴,又∵平面ABE的法向量為,∴,∴平面ABE與平面夾角的余弦值為.18、(1)3;(2)5【解析】(1)由題可得和的距離即為的最小值;(2)可得此時直線的方程為,求出交點坐標即可求出距離.【詳解】(1)由題可得當且時,取得最小值,即和的距離,由兩平行線間的距離公式,得,所以的最小值為3.(2)當直線與軸平行時,方程為,設直線與直線,分別交于點,,則,,所以,即,所以.19、(1)(2)證明見解析,定值為【解析】(1)設出直線的方程并與拋物線方程聯(lián)立,結合根與系數(shù)關系求得.(2)求得過點的拋物線的切線方程,由此求得兩點的坐標,通過化簡來證得為定值,并求得定值.【小問1詳解】依題意可知直線的斜率不為零,設直線的方程為,設,,消去并化簡得,所以,所以.小問2詳解】拋物線方程為,焦點坐標為,準線,通徑所在直線,在拋物線上,且,所以過點的拋物線的切線的斜率存在且不為零,設過點的切線方程為,由消去并化簡得,,將代入上式并化簡得,解得,所以切線方程為,令得,令得,,將代入上式并化簡得,所以為定值,且定值為.20、(1);(2)-1【解析】(1)由題設可得,求出參數(shù)b,即可寫出橢圓C的方程;(2)延長線段DB交橢圓C于點,根據(jù)對稱性設B,為,,聯(lián)立橢圓方程,應用韋達定理并結合已知條件可得,直線與圓相切可得,進而求參數(shù)t,即可求直線BD的斜率.【小問1詳解】因為圓與x軸的交點分別為,,所以橢圓C的焦點分別為,,∴,根據(jù)條件得,∴,故橢圓C的方程為【小問2詳解】延長線段DB交橢圓C于點,因直線BD與直線BE的傾斜角互補,根據(jù)對稱性得由條件可設B的坐標為,設D,的縱坐標分別為,,直線的方程為,由于,即,所以由得:∴,∴①,②,由①得:,代入②得,∴∵直線與圓相切,∴,即∴,解得,又,∴,故,即直線BD斜率【點睛】關鍵點點睛:將已知線段的長度關系轉化為D,的縱坐標的數(shù)量關系,設直線的含參方程,聯(lián)立橢圓方程及其與圓的相切求參數(shù)關系,進而求參數(shù)即可.21、(1);(2)【解析】(1)根據(jù)拋物線的定義,結合到焦點、軸的距離求,寫出拋物線方程.(2)直線的斜率不存在易得與不垂直與題設矛盾,設直線方程聯(lián)立拋物線方程,應用韋達定理求,,進而求,由題設向量垂直的坐標表示有求直線方程即可.【詳解】(1)由己知,可設拋物線的方程為,又到焦點的距離是1,∴點到準線的距離是1,又到軸的距離是,∴,解得,則拋物線方程是(2)假設直線的斜率不存在,則直線的方程為,與聯(lián)立可得交點、的坐標分別為,,易得,可知直線與直線不垂直,不滿足題意,故假設不成立,∴直線的斜率存在.設直線為,整理得,設,,聯(lián)立直線與拋物線的方程得,消去,并整理得,于是,,∴,又,因此
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年四川省阿壩州黑水縣晴朗鄉(xiāng)招聘社區(qū)工作者考前自測高頻考點模擬試題(共500題)含答案
- 2024年四川華新現(xiàn)代職業(yè)學院單招職業(yè)技能測試題庫含答案解析
- 2024年山東經(jīng)貿職業(yè)學院單招職業(yè)技能測試題庫含答案解析
- 2024年海南衛(wèi)生健康職業(yè)學院單招職業(yè)技能測試題庫標準卷
- 2025至2031年中國中文字表編譯軟件行業(yè)投資前景及策略咨詢研究報告
- 2024年中國陶瓷道釘市場調查研究報告
- 2024年中國紡織機械銅套市場調查研究報告
- 2024年中國液壓靴面定型機市場調查研究報告
- 2024年中國折疊型工具箱市場調查研究報告
- 醫(yī)療服務收費項目培訓
- 人感染禽流感診療方案(2024年版)
- 居家養(yǎng)老服務報價明細表
- 食材配送服務方案投標方案(技術方案)
- 年產15000噸硫酸鋁項目環(huán)評報告表
- YB-T6115-2023《焦爐煤氣脫硫廢液干法制酸技術規(guī)范》
- 2023-2024學年湖北省孝感市云夢縣八年級(上)期末英語試卷
- 2024年一級注冊建筑師理論考試題庫ab卷
- 2024二人合伙經(jīng)營項目簡單協(xié)議書
- 小學數(shù)學班級學情分析報告
- IMCA船舶隱患排查表
- 2024年軟件開發(fā)調試合同樣本(二篇)
評論
0/150
提交評論