四川省成都簡陽市三星中學(xué)2023-2024學(xué)年中考數(shù)學(xué)四模試卷含解析_第1頁
四川省成都簡陽市三星中學(xué)2023-2024學(xué)年中考數(shù)學(xué)四模試卷含解析_第2頁
四川省成都簡陽市三星中學(xué)2023-2024學(xué)年中考數(shù)學(xué)四模試卷含解析_第3頁
四川省成都簡陽市三星中學(xué)2023-2024學(xué)年中考數(shù)學(xué)四模試卷含解析_第4頁
四川省成都簡陽市三星中學(xué)2023-2024學(xué)年中考數(shù)學(xué)四模試卷含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

四川省成都簡陽市三星中學(xué)2023-2024學(xué)年中考數(shù)學(xué)四模試卷注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(共10小題,每小題3分,共30分)1.若正比例函數(shù)y=mx(m是常數(shù),m≠0)的圖象經(jīng)過點A(m,4),且y的值隨x值的增大而減小,則m等于()A.2 B.﹣2 C.4 D.﹣42.已知x+=3,則x2+=()A.7 B.9 C.11 D.83.在方格紙中,選擇標(biāo)有序號①②③④中的一個小正方形涂黑,與圖中陰影部分構(gòu)成中心對稱圖形.該小正方形的序號是()A.① B.② C.③ D.④4.如圖,以AD為直徑的半圓O經(jīng)過Rt△ABC斜邊AB的兩個端點,交直角邊AC于點E;B、E是半圓弧的三等分點,的長為,則圖中陰影部分的面積為()A. B. C. D.5.如圖,已知射線OM,以O(shè)為圓心,任意長為半徑畫弧,與射線OM交于點A,再以點A為圓心,AO長為半徑畫弧,兩弧交于點B,畫射線OB,那么∠AOB的度數(shù)是()A.90° B.60° C.45° D.30°6.等式成立的x的取值范圍在數(shù)軸上可表示為(

)A. B. C. D.7.關(guān)于的分式方程解為,則常數(shù)的值為()A. B. C. D.8.已知a=(+1)2,估計a的值在()A.3和4之間 B.4和5之間 C.5和6之間 D.6和7之間9.由一些相同的小立方塊搭成的幾何體的三視圖如圖所示,則搭成該幾何體的小立方塊有()A.3塊 B.4塊 C.6塊 D.9塊10.已知,如圖,AB是⊙O的直徑,點D,C在⊙O上,連接AD、BD、DC、AC,如果∠BAD=25°,那么∠C的度數(shù)是()A.75° B.65° C.60° D.50°二、填空題(本大題共6個小題,每小題3分,共18分)11.5月份,甲、乙兩個工廠用水量共為200噸.進(jìn)入夏季用水高峰期后,兩工廠積極響應(yīng)國家號召,采取節(jié)水措施.6月份,甲工廠用水量比5月份減少了15%,乙工廠用水量比5月份減少了10%,兩個工廠6月份用水量共為174噸,求兩個工廠5月份的用水量各是多少.設(shè)甲工廠5月份用水量為x噸,乙工廠5月份用水量為y噸,根據(jù)題意列關(guān)于x,y的方程組為__.12.如圖(1),在矩形ABCD中,將矩形折疊,使點B落在邊AD上,這時折痕與邊AD和BC分別交于點E、點F.然后再展開鋪平,以B、E、F為頂點的△BEF稱為矩形ABCD的“折痕三角形”.如圖(2),在矩形ABCD中,AB=2,BC=4,當(dāng)“折痕△BEF”面積最大時,點E的坐標(biāo)為_________________________.13.一個不透明的袋中共有5個小球,分別為2個紅球和3個黃球,它們除顏色外完全相同,隨機摸出兩個小球,摸出兩個顏色相同的小球的概率為____.14.如圖,AB是⊙O的直徑,點C在AB的延長線上,CD與⊙O相切于點D,若∠C=20°,則∠CDA=°.15.如圖,學(xué)校環(huán)保社成員想測量斜坡CD旁一棵樹AB的高度,他們先在點C處測得樹頂B的仰角為60°,然后在坡頂D測得樹頂B的仰角為30°,已知DE⊥EA,斜坡CD的長度為30m,DE的長為15m,則樹AB的高度是_____m.16.將一副三角尺如圖所示疊放在一起,則的值是.三、解答題(共8題,共72分)17.(8分)某商家預(yù)測一種應(yīng)季襯衫能暢銷市場,就用13200元購進(jìn)了一批這種襯衫,面市后果然供不應(yīng)求.商家又用28800元購進(jìn)了第二批這種襯衫,所購數(shù)量是第一批購進(jìn)量的2倍,但單價貴了10元.該商家購進(jìn)的第一批襯衫是多少件?若兩批襯衫按相同的標(biāo)價銷售,最后剩下50件按八折優(yōu)惠賣出,如果兩批襯衫全部售完后利潤率不低于25%(不考慮其它因素),那么每件襯衫的標(biāo)價至少是多少元?18.(8分)某市為了解本地七年級學(xué)生寒假期間參加社會實踐活動情況,隨機抽查了部分七年級學(xué)生寒假參加社會實踐活動的天數(shù)(“A﹣﹣﹣不超過5天”、“B﹣﹣﹣6天”、“C﹣﹣﹣7天”、“D﹣﹣﹣8天”、“E﹣﹣﹣9天及以上”),并將得到的數(shù)據(jù)繪制成如下兩幅不完整的統(tǒng)計圖.請根據(jù)以上的信息,回答下列問題:(1)補全扇形統(tǒng)計圖和條形統(tǒng)計圖;(2)所抽查學(xué)生參加社會實踐活動天數(shù)的眾數(shù)是(選填:A、B、C、D、E);(3)若該市七年級約有2000名學(xué)生,請你估計參加社會實踐“活動天數(shù)不少于7天”的學(xué)生大約有多少人?19.(8分)如圖,在中,以為直徑的⊙交于點,過點作于點,且.()判斷與⊙的位置關(guān)系并說明理由;()若,,求⊙的半徑.20.(8分)進(jìn)入冬季,某商家根據(jù)市民健康需要,代理銷售一種防塵口罩,進(jìn)貨價為20元/包,經(jīng)市場銷售發(fā)現(xiàn):銷售單價為30元/包時,每周可售出200包,每漲價1元,就少售出5包.若供貨廠家規(guī)定市場價不得低于30元/包.試確定周銷售量y(包)與售價x(元/包)之間的函數(shù)關(guān)系式;試確定商場每周銷售這種防塵口罩所獲得的利潤w(元)與售價x(元/包)之間的函數(shù)關(guān)系式,并直接寫出售價x的范圍;當(dāng)售價x(元/包)定為多少元時,商場每周銷售這種防塵口罩所獲得的利潤w(元)最大?最大利潤是多少?21.(8分)如圖,在平面直角坐標(biāo)系中,拋物線y=﹣x2+bx+c(a≠0)與x軸交于A、B兩點,與y軸交于點C,點A的坐標(biāo)為(﹣1,0),拋物線的對稱軸直線x=交x軸于點D.(1)求拋物線的解析式;(2)點E是線段BC上的一個動點,過點E作x軸的垂線與拋物線相交于點F,交x軸于點G,當(dāng)點E運動到什么位置時,四邊形CDBF的面積最大?求出四邊形CDBF的最大面積及此時E點的坐標(biāo);(3)在(2)的條件下,將線段FG繞點G順時針旋轉(zhuǎn)一個角α(0°<α<90°),在旋轉(zhuǎn)過程中,設(shè)線段FG與拋物線交于點N,在線段GB上是否存在點P,使得以P、N、G為頂點的三角形與△ABC相似?如果存在,請直接寫出點P的坐標(biāo);如果不存在,請說明理由.22.(10分)如圖,某校準(zhǔn)備給長12米,寬8米的矩形室內(nèi)場地進(jìn)行地面裝飾,現(xiàn)將其劃分為區(qū)域Ⅰ(菱形),區(qū)域Ⅱ(4個全等的直角三角形),剩余空白部分記為區(qū)域Ⅲ;點為矩形和菱形的對稱中心,,,,為了美觀,要求區(qū)域Ⅱ的面積不超過矩形面積的,若設(shè)米.甲乙丙單價(元/米2)(1)當(dāng)時,求區(qū)域Ⅱ的面積.計劃在區(qū)域Ⅰ,Ⅱ分別鋪設(shè)甲,乙兩款不同的深色瓷磚,區(qū)域Ⅲ鋪設(shè)丙款白色瓷磚,①在相同光照條件下,當(dāng)場地內(nèi)白色區(qū)域的面積越大,室內(nèi)光線亮度越好.當(dāng)為多少時,室內(nèi)光線亮度最好,并求此時白色區(qū)域的面積.②三種瓷磚的單價列表如下,均為正整數(shù),若當(dāng)米時,購買三款瓷磚的總費用最少,且最少費用為7200元,此時__________,__________.23.(12分)為更精準(zhǔn)地關(guān)愛留守學(xué)生,某學(xué)校將留守學(xué)生的各種情形分成四種類型:A.由父母一方照看;B.由爺爺奶奶照看;C.由叔姨等近親照看;D.直接寄宿學(xué)校.某數(shù)學(xué)小組隨機調(diào)查了一個班級,發(fā)現(xiàn)該班留守學(xué)生數(shù)量占全班總?cè)藬?shù)的20%,并將調(diào)查結(jié)果制成如下兩幅不完整的統(tǒng)計圖.該班共有名留守學(xué)生,B類型留守學(xué)生所在扇形的圓心角的度數(shù)為;將條形統(tǒng)計圖補充完整;已知該校共有2400名學(xué)生,現(xiàn)學(xué)校打算對D類型的留守學(xué)生進(jìn)行手拉手關(guān)愛活動,請你估計該校將有多少名留守學(xué)生在此關(guān)愛活動中受益?24.某校七年級(1)班班主任對本班學(xué)生進(jìn)行了“我最喜歡的課外活動”的調(diào)查,并將調(diào)查結(jié)果分為書法和繪畫類記為A;音樂類記為B;球類記為C;其他類記為D.根據(jù)調(diào)查結(jié)果發(fā)現(xiàn)該班每個學(xué)生都進(jìn)行了等級且只登記了一種自己最喜歡的課外活動.班主任根據(jù)調(diào)查情況把學(xué)生都進(jìn)行了歸類,并制作了如下兩幅統(tǒng)計圖,請你結(jié)合圖中所給信息解答下列問題:七年級(1)班學(xué)生總?cè)藬?shù)為_______人,扇形統(tǒng)計圖中D類所對應(yīng)扇形的圓心角為_____度,請補全條形統(tǒng)計圖;學(xué)校將舉行書法和繪畫比賽,每班需派兩名學(xué)生參加,A類4名學(xué)生中有兩名學(xué)生擅長書法,另兩名擅長繪畫.班主任現(xiàn)從A類4名學(xué)生中隨機抽取兩名學(xué)生參加比賽,請你用列表或畫樹狀圖的方法求出抽到的兩名學(xué)生恰好是一名擅長書法,另一名擅長繪畫的概率.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】

利用待定系數(shù)法求出m,再結(jié)合函數(shù)的性質(zhì)即可解決問題.【詳解】解:∵y=mx(m是常數(shù),m≠0)的圖象經(jīng)過點A(m,4),∴m2=4,∴m=±2,∵y的值隨x值的增大而減小,∴m<0,∴m=﹣2,故選:B.【點睛】本題考查待定系數(shù)法,一次函數(shù)的性質(zhì)等知識,解題的關(guān)鍵是靈活運用所學(xué)知識解決問題,屬于中考??碱}型.2、A【解析】

根據(jù)完全平方公式即可求出答案.【詳解】∵(x+)2=x2+2+∴9=2+x2+,∴x2+=7,故選A.【點睛】本題考查完全平方公式,解題的關(guān)鍵是熟練運用完全平方公式.3、B【解析】根據(jù)中心對稱圖形的概念,中心對稱圖形是圖形沿對稱中心旋轉(zhuǎn)180度后與原圖重合。因此,通過觀察發(fā)現(xiàn),當(dāng)涂黑②時,所形成的圖形關(guān)于點A中心對稱。故選B。4、D【解析】

連接BD,BE,BO,EO,先根據(jù)B、E是半圓弧的三等分點求出圓心角∠BOD的度數(shù),再利用弧長公式求出半圓的半徑R,再利用圓周角定理求出各邊長,通過轉(zhuǎn)化將陰影部分的面積轉(zhuǎn)化為S△ABC﹣S扇形BOE,然后分別求出面積相減即可得出答案.【詳解】解:連接BD,BE,BO,EO,∵B,E是半圓弧的三等分點,∴∠EOA=∠EOB=∠BOD=60°,∴∠BAD=∠EBA=30°,∴BE∥AD,∵的長為,∴解得:R=4,∴AB=ADcos30°=,∴BC=AB=,∴AC=BC=6,∴S△ABC=×BC×AC=××6=,∵△BOE和△ABE同底等高,∴△BOE和△ABE面積相等,∴圖中陰影部分的面積為:S△ABC﹣S扇形BOE=故選:D.【點睛】本題主要考查弧長公式,扇形面積公式,圓周角定理等,掌握圓的相關(guān)性質(zhì)是解題的關(guān)鍵.5、B【解析】

首先連接AB,由題意易證得△AOB是等邊三角形,根據(jù)等邊三角形的性質(zhì),可求得∠AOB的度數(shù).【詳解】連接AB,根據(jù)題意得:OB=OA=AB,∴△AOB是等邊三角形,∴∠AOB=60°.故答案選:B.【點睛】本題考查了等邊三角形的判定與性質(zhì),解題的關(guān)鍵是熟練的掌握等邊三角形的判定與性質(zhì).6、B【解析】

根據(jù)二次根式有意義的條件即可求出的范圍.【詳解】由題意可知:,解得:,故選:.【點睛】考查二次根式的意義,解題的關(guān)鍵是熟練運用二次根式有意義的條件.7、D【解析】

根據(jù)分式方程的解的定義把x=4代入原分式方程得到關(guān)于a的一次方程,解得a的值即可.【詳解】解:把x=4代入方程,得,解得a=1.經(jīng)檢驗,a=1是原方程的解故選D.點睛:此題考查了分式方程的解,分式方程注意分母不能為2.8、D【解析】

首先計算平方,然后再確定的范圍,進(jìn)而可得4+的范圍.【詳解】解:a=×(7+1+2)=4+,∵2<<3,∴6<4+<7,∴a的值在6和7之間,故選D.【點睛】此題主要考查了估算無理數(shù)的大小,用有理數(shù)逼近無理數(shù),求無理數(shù)的近似值.9、B【解析】分析:從俯視圖中可以看出最底層小正方體的個數(shù)及形狀,從主視圖和左視圖可以看出每一層小正方體的層數(shù)和個數(shù),從而算出總的個數(shù).解答:解:從俯視圖可得最底層有3個小正方體,由主視圖可得有2層上面一層是1個小正方體,下面有2個小正方體,從左視圖上看,后面一層是2個小正方體,前面有1個小正方體,所以此幾何體共有四個正方體.故選B.10、B【解析】因為AB是⊙O的直徑,所以求得∠ADB=90°,進(jìn)而求得∠B的度數(shù),又因為∠B=∠C,所以∠C的度數(shù)可求出.解:∵AB是⊙O的直徑,

∴∠ADB=90°.

∵∠BAD=25°,

∴∠B=65°,

∴∠C=∠B=65°(同弧所對的圓周角相等).

故選B.

二、填空題(本大題共6個小題,每小題3分,共18分)11、x+y=200(1-15%)x+(1-10%)y=174【解析】

甲工廠5月份用水量為x噸,乙工廠5月份用水量為y噸,根據(jù)甲、乙兩廠5月份用水量與6月份用水量列出關(guān)于x、y的方程組即可.【詳解】甲工廠5月份用水量為x噸,乙工廠5月份用水量為y噸,根據(jù)題意得:x+y=200(1-15%)x+(1-10%)y=174故答案為:x+y=200(1-15%)x+(1-10%)y=174【點睛】本題考查了二元一次方程組的應(yīng)用,弄清題意,找準(zhǔn)等量關(guān)系是解題的關(guān)鍵.12、(,2).【解析】

解:如圖,當(dāng)點B與點D重合時,△BEF面積最大,設(shè)BE=DE=x,則AE=4-x,在RT△ABE中,∵EA2+AB2=BE2,∴(4-x)2+22=x2,∴x=,∴BE=ED=,AE=AD-ED=,∴點E坐標(biāo)(,2).故答案為:(,2).【點睛】本題考查翻折變換(折疊問題),利用數(shù)形結(jié)合思想解題是關(guān)鍵.13、【解析】

解:根據(jù)題意可得:列表如下紅1紅2黃1黃2黃3紅1紅1,紅2紅1,黃1紅1,黃2紅1,黃3紅2紅2,紅1紅2,黃1紅2,黃2紅2,黃3黃1黃1,紅1黃1,紅2黃1,黃2黃1,黃3黃2黃2,紅1黃2,紅2黃2,黃1黃2,黃3黃3黃3,紅1黃3,紅2黃3,黃1黃3,黃2共有20種所有等可能的結(jié)果,其中兩個顏色相同的有8種情況,故摸出兩個顏色相同的小球的概率為.【點睛】本題考查列表法和樹狀圖法,掌握步驟正確列表是解題關(guān)鍵.14、1.【解析】

連接OD,根據(jù)圓的切線定理和等腰三角形的性質(zhì)可得出答案.【詳解】連接OD,則∠ODC=90°,∠COD=70°,∵OA=OD,∴∠ODA=∠A=∠COD=35°,∴∠CDA=∠CDO+∠ODA=90°+35°=1°,故答案為1.考點:切線的性質(zhì).15、1【解析】

先根據(jù)CD=20米,DE=10m得出∠DCE=30°,故可得出∠DCB=90°,再由∠BDF=30°可知∠DBE=60°,由DF∥AE可得出∠BGF=∠BCA=60°,故∠GBF=30°,所以∠DBC=30°,再由銳角三角函數(shù)的定義即可得出結(jié)論.【詳解】解:作DF⊥AB于F,交BC于G.則四邊形DEAF是矩形,∴DE=AF=15m,∵DF∥AE,∴∠BGF=∠BCA=60°,∵∠BGF=∠GDB+∠GBD=60°,∠GDB=30°,∴∠GDB=∠GBD=30°,∴GD=GB,在Rt△DCE中,∵CD=2DE,∴∠DCE=30°,∴∠DCB=90°,∵∠DGC=∠BGF,∠DCG=∠BFG=90°∴△DGC≌△BGF,∴BF=DC=30m,∴AB=30+15=1(m),故答案為1.【點睛】本題考查的是解直角三角形的應(yīng)用-仰角俯角問題,熟記銳角三角函數(shù)的定義是解答此題的關(guān)鍵.16、【解析】試題分析:∵∠BAC=∠ACD=90°,∴AB∥CD.∴△ABE∽△DCE.∴.∵在Rt△ACB中∠B=45°,∴AB=AC.∵在RtACD中,∠D=30°,∴.∴.三、解答題(共8題,共72分)17、(1)120件;(2)150元.【解析】試題分析:(1)設(shè)該商家購進(jìn)的第一批襯衫是x件,則購進(jìn)第二批這種襯衫可設(shè)為2x件,由已知可得,,這種襯衫貴10元,列出方程求解即可.(2)設(shè)每件襯衫的標(biāo)價至少為a元,由(1)可得出第一批和第二批的進(jìn)價,從而求出利潤表達(dá)式,然后列不等式解答即可.試題解析:(1)設(shè)該商家購進(jìn)的第一批襯衫是件,則第二批襯衫是件.由題意可得:,解得,經(jīng)檢驗是原方程的根.(2)設(shè)每件襯衫的標(biāo)價至少是元.由(1)得第一批的進(jìn)價為:(元/件),第二批的進(jìn)價為:(元)由題意可得:解得:,所以,,即每件襯衫的標(biāo)價至少是150元.考點:1、分式方程的應(yīng)用2、一元一次不等式的應(yīng)用.18、(1)見解析;(2)A;(3)800人.【解析】

(1)用A組人數(shù)除以它所占的百分比求出樣本容量,利用360°乘以對應(yīng)的百分比即可求得扇形圓心角的度數(shù),再求得時間是8天的人數(shù),從而補全扇形統(tǒng)計圖和條形統(tǒng)計圖;(2)根據(jù)眾數(shù)的定義即可求解;(3)利用總?cè)藬?shù)2000乘以對應(yīng)的百分比即可求解.【詳解】解:(1)∵被調(diào)查的學(xué)生人數(shù)為24÷40%=60人,∴D類別人數(shù)為60﹣(24+12+15+3)=6人,則D類別的百分比為×100%=10%,補全圖形如下:(2)所抽查學(xué)生參加社會實踐活動天數(shù)的眾數(shù)是A,故答案為:A;(3)估計參加社會實踐“活動天數(shù)不少于7天”的學(xué)生大約有2000×(25%+10%+5%)=800人.【點睛】本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關(guān)鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù);扇形統(tǒng)計圖直接反映部分占總體的百分比大小.19、(1)DE與⊙O相切,詳見解析;(2)5【解析】

(1)根據(jù)直徑所對的圓心角是直角,再結(jié)合所給條件∠BDE=∠A,可以推導(dǎo)出∠ODE=90°,說明相切的位置關(guān)系。(2)根據(jù)直徑所對的圓心角是直角,并且在△BDE中,由DE⊥BC,有∠BDE+∠DBE=90°可以推導(dǎo)出∠DAB=∠C,可判定△ABC是等腰三角形,再根據(jù)BD⊥AC可知D是AC的中點,從而得出AD的長度,再在Rt△ADB中計算出直徑AB的長,從而算出半徑?!驹斀狻浚?)連接OD,在⊙O中,因為AB是直徑,所以∠ADB=90°,即∠ODA+∠ODB=90°,由OA=OD,故∠A=∠ODA,又因為∠BDE=∠A,所以∠ODA=∠BDE,故∠ODA+∠ODB=∠BDE+∠ODB=∠ODE=90°,即OD⊥DE,OD過圓心,D是圓上一點,故DE是⊙O切線上的一段,因此位置關(guān)系是直線DE與⊙O相切;(2)由(1)可知,∠ADB=90°,故∠A+∠ABD=90°,故BD⊥AC,由∠BDE=∠A,則∠BDE+∠ABD=90°,因為DE⊥BC,所以∠DEB=90°,故在△BDE中,有∠BDE+∠DBE=90°,則∠ABD=∠DBE,又因為BD⊥AC,即∠ADB=∠CDB=90°,所以∠DAB=∠C,故△ABC是等腰三角形,BD是等腰△ABC底邊BC上的高,則D是AC的中點,故AD=AC=×16=8,在Rt△ABD中,tanA===,可解得BD=6,由勾股定理可得AB===10,AB為直徑,所以⊙O的半徑是5.【點睛】本題主要考查圓中的計算問題和與圓有關(guān)的位置關(guān)系,解本題的要點在于求出AD的長,從而求出AB的長.20、(1)y=﹣5x+350;(2)w=﹣5x2+450x﹣7000(30≤x≤40);(3)當(dāng)售價定為45元時,商場每周銷售這種防塵口罩所獲得的利潤w(元)最大,最大利潤是1元.【解析】試題分析:(1)根據(jù)題意可以直接寫出y與x之間的函數(shù)關(guān)系式;(2)根據(jù)題意可以直接寫出w與x之間的函數(shù)關(guān)系式,由供貨廠家規(guī)定市場價不得低于30元/包,且商場每周完成不少于150包的銷售任務(wù)可以確定x的取值范圍;(3)根據(jù)第(2)問中的函數(shù)解析式和x的取值范圍,可以解答本題.試題解析:解:(1)由題意可得:y=200﹣(x﹣30)×5=﹣5x+350即周銷售量y(包)與售價x(元/包)之間的函數(shù)關(guān)系式是:y=﹣5x+350;(2)由題意可得,w=(x﹣20)×(﹣5x+350)=﹣5x2+450x﹣7000(30≤x≤70),即商場每周銷售這種防塵口罩所獲得的利潤w(元)與售價x(元/包)之間的函數(shù)關(guān)系式是:w=﹣5x2+450x﹣7000(30≤x≤40);(3)∵w=﹣5x2+450x﹣7000=﹣5(x﹣45)2+1∵二次項系數(shù)﹣5<0,∴x=45時,w取得最大值,最大值為1.答:當(dāng)售價定為45元時,商場每周銷售這種防塵口罩所獲得的利潤最大,最大利潤是1元.點睛:本題考查了二次函數(shù)的應(yīng)用,解題的關(guān)鍵是明確題意,可以寫出相應(yīng)的函數(shù)解析式,并確定自變量的取值范圍以及可以求出函數(shù)的最值.21、(1);(1),E(1,1);(3)存在,P點坐標(biāo)可以為(1+,5)或(3,5).【解析】

(1)設(shè)B(x1,5),由已知條件得,進(jìn)而得到B(2,5).又由對稱軸求得b.最終得到拋物線解析式.(1)先求出直線BC的解析式,再設(shè)E(m,=﹣m+1.),F(xiàn)(m,﹣m1+m+1.)求得FE的值,得到S△CBF﹣m1+2m.又由S四邊形CDBF=S△CBF+S△CDB,得S四邊形CDBF最大值,最終得到E點坐標(biāo).(3)設(shè)N點為(n,﹣n1+n+1),1<n<2.過N作NO⊥x軸于點P,得PG=n﹣1.又由直角三角形的判定,得△ABC為直角三角形,由△ABC∽△GNP,得n=1+或n=1﹣(舍去),求得P點坐標(biāo).又由△ABC∽△GNP,且時,得n=3或n=﹣2(舍去).求得P點坐標(biāo).【詳解】解:(1)設(shè)B(x1,5).由A(﹣1,5),對稱軸直線x=.∴解得,x1=2.∴B(2,5).又∵∴b=.∴拋物線解析式為y=,(1)如圖1,∵B(2,5),C(5,1).∴直線BC的解析式為y=﹣x+1.由E在直線BC上,則設(shè)E(m,=﹣m+1.),F(xiàn)(m,﹣m1+m+1.)∴FE=﹣m1+m+1﹣(﹣n+1)=﹣m1+1m.由S△CBF=EF?OB,∴S△CBF=(﹣m1+1m)×2=﹣m1+2m.又∵S△CDB=BD?OC=×(2﹣)×1=∴S四邊形CDBF=S△CBF+S△CDB═﹣m1+2m+.化為頂點式得,S四邊形CDBF=﹣(m﹣1)1+.當(dāng)m=1時,S四邊形CDBF最大,為.此時,E點坐標(biāo)為(1,1).(3)存在.如圖1,由線段FG繞點G順時針旋轉(zhuǎn)一個角α(5°<α<95°),設(shè)N(n,﹣n1+n+1),1<n<2.過N作NO⊥x軸于點P(n,5).∴NP=﹣n1+n+1,PG=n﹣1.又∵在Rt△AOC中,AC1=OA1+OC1=1+2=5,在Rt△BOC中,BC1=OB1+OC1=16+2=15.AB1=51=15.∴AC1+BC1=AB1.∴△ABC為直角三角形.當(dāng)△ABC∽△GNP,且時,即,整理得,n1﹣1n﹣6=5.解得,n=1+或n=1﹣(舍去).此時P點坐標(biāo)為(1+,5).當(dāng)△ABC∽△GNP,且時,即,整理得,n1+n﹣11=5.解得,n=3或n=﹣2(舍去).此時P點坐標(biāo)為(3,5).綜上所述,滿足題意的P點坐標(biāo)可以為,(1+,5),(3,5).【點睛】本題考查求拋物線,三角形的性質(zhì)和面積的求法,直角三角形的判定,以及三角形相似的性質(zhì),屬于較難題.22、(1)8m2;(2)68m2;(3)40,8【解析】

(1)根據(jù)中心對稱圖形性質(zhì)和,,,可得,即可解當(dāng)時,4個全等直角三角形的面積;(2)白色區(qū)域面積即是矩形面積減去一二部分的面積,分別用含

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論